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Abstract

This review examines high-quality research evidence that synthesises the effects of extreme heat on human health in tropical
Africa. Web of Science (WoS) was used to identify research articles on the effects extreme heat, humidity, Wet-bulb Globe
Temperature (WBGT), apparent temperature, wind, Heat Index, Humidex, Universal Thermal Climate Index (UTCI), heat-
wave, high temperature and hot climate on human health, human comfort, heat stress, heat rashes, and heat-related morbidity
and mortality. A total of 5, 735 articles were initially identified, which were reduced to 100 based on a set of inclusion and
exclusion criteria. The review discovered that temperatures up to 60°C have been recorded in the region and that extreme heat
has many adverse effects on human health, such as worsening mental health in low-income adults, increasing the likelihood of
miscarriage, and adverse effects on well-being and safety, psychological behaviour, efficiency, and social comfort of outdoor
workers who spend long hours performing manual labour. Extreme heat raises the risk of death from heat-related disease,
necessitating preventative measures such as adaptation methods to mitigate the adverse effects on vulnerable populations

during hot weather. This study highlights the social inequalities in heat exposure and adverse health outcomes.
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Introduction

Most studies on heat-human health have focused on high
income countries (HICs) compared to low- and middle-
income countries (LMICs), for which few studies have
been conducted, particularly in tropical Africa (Basu 2009;
Green et al. 2019; Ebi et al. 2021; Kotharkar and Ghosh
2022). High temperatures can cause a rise in core body
temperature and heart rate and lead to heat stress, heat
stroke and, in extreme cases, death. Individuals with heart
disease, obesity, or respiratory conditions are more vulner-
able to heat stress (Donaldson et al. 2003; Kenney et al.
2014; Rahman and Adnan 2023). Among the effects of high
temperatures on human health are heat exhaustion, dehydra-
tion, respiratory issues, cardiovascular strain, skin diseases,
mental health issues, and electrolyte imbalance (Basu and
Samet 2002; Gosling et al. 2009; Hajat and Kosatky 2010;
Gabriel and Endlicher 2011; Hondula et al. 2012; Ma et al.
2014; Alcoforado et al. 2015; Son et al. 2016; Mora et al.
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2017). High temperatures not only exacerbate existing heat-
related health conditions, leading to organ failure and mor-
tality, but also cause a range of harmful effects such as an
increase in violent crimes (Sanz-Barbero et al. 2018), fatal
road accidents (Wu et al. 2018), and stress on ambulance
services (Dolney and Sheridan 2006; Cheng et al. 2016;
Guo 2017). Rising temperatures also increase electricity
and water demand (Hatvani-Kovacs et al. 2016), impacting
infrastructure, water quality, open spaces, and overall live-
ability in urban areas (Klok and Kluck 2018).

The effects of heat on human health are further exacer-
bated by environmental, socioeconomic, demographic, physi-
ological and behavioural factors. For instance, urban areas
with high population density, limited green space, and exten-
sive artificial impervious surfaces (AIS) can be warmer than
surrounding areas (Myint et al. 2013; Chen et al. 2022a, b;
Rajagopal et al. 2023). Economic constraints can limit access
to cooling systems, adequate hydration, and healthcare ser-
vices, e.g. inadequate access to air conditioning and other
cooling methods can increase human vulnerability during
extreme heat. Living in poorly ventilated homes can exac-
erbate the harmful effects of extreme heat (Thomson et al.
2019). Limited access to healthcare can hinder the treatment
of heat-related illnesses; the effectiveness of public health
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interventions and heatwave warning systems plays a crucial
role in exacerbating the harmful effects of extreme heat (Fos-
ter et al. 2020; Périard et al. 2021; Hess et al. 2023). Outdoor
workers, such as those in construction, mining, and agricul-
ture, are more exposed to high temperatures (Jay et al. 2021;
He et al. 2023). Isolated individuals may lack assistance dur-
ing heat waves (Kenny et al. 2020; Habibi et al. 2023). Older
populations and young children are more sensitive to heat
due to less effective thermoregulation (Tsuzuki 2023). A lack
of awareness of heat risks can lead to inadequate preventive
measures (Jessel et al. 2019). Cultural norms and practices,
for instance, clothing choices, might affect how individuals
respond to heat (Sovacool et al. 2021).

The occurrence of hot days in tropical Africa has been
increasing since the 1980s because of increasing green-
house gas (GHG) emissions, which continue to alter the
region's summer temperatures (Mahlstein et al. 2011; Har-
rington et al. 2017; Herold et al. 2017; Ntoumos et al.
2022). Temperatures in tropical Africa are frequently
near the upper limit of human comfort (Sherwood and
Huber 2010). For example, in 2010, extreme tempera-
ture incidents of 47.6 °C and 48.2 °C were recorded in
Faya-Largeau, Chad Republic, and Bilma, Niger Republic,
respectively (World Meteorological Organization 2016).
Furthermore, between 1989 and 2009, tropical Africa
recorded 40 to 50 heat waves annually (Cook and Vizy
2012; Iyakaremye et al. 2021). The Nigerian Meteorolog-
ical Agency (2021) recently reported extreme heatwave
events of 50 °C in the Northern-eastern region of Nigeria.
The Emergency event database (EM-DAT 2023) reports an
incident with an extreme temperature of 60 °C in Nigeria
which killed 60 people. (Table 1).

The effects of extreme heat on human health in LMICs
are often exacerbated by socioeconomic and demographic
characteristics of the population, for example, poverty, lit-
eracy, infants, and aged population (Oluwafemi et al. 2023;
Nyadanu et al. 2023). The IPCC (2022) reported that LMICs
had limited adaptive capacity to extreme heat due to scarce
resources, fragile political institutions, and socio-cultural
practices. More research on heat-human health in tropical
Africa is needed (Omonijo et al. 2013; Agan 2017; Leal
Filho et al. 2018; Niu et al. 2021) to identify the require-
ment for enhancing the resilience of the region to climate
change-enhanced extreme heat events. Recent studies indi-
cate that some HICs have observed a decline in the sensitiv-
ity of health outcomes to extreme heat, which implies an
increase in adaptive capacity to extreme heat (Coates et al.
2014; Bobb et al. 2014; Sheridan and Allen 2018; Laranjeira
et al. 2021). Unlike HICs, vulnerability to extreme heat in
LMICs is on the rise due to their increase in sensitivity and
low adaptive capacity to extreme heat (Hajat et al. 2010;
Azhar et al. 2017; Green et al. 2019; Ncongwane et al. 2021;
Chen et al. 2022a, b). This review aims to summarise the
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peer-reviewed literature on the relationship between extreme
heat and human health in tropical Africa.

Material and methods
The regional focus of the review

Tropical regions lie between latitudes 23.5° north and south
of the equator. Tropical Africa consists of 48 countries that
make up five sub-regions: West Africa (16 countries), East
Africa (9), Central Africa (10), part of Southern Africa (7),
the Indian Ocean islands, and Madagascar (6). Figure 1
presents the sub-regions and member countries of tropical
Africa. The Koppen-Geiger system classified the climate
of tropical Africa as Type ‘A, characterised by constant,
elevated temperatures and generally humid (Af) with high
amounts of precipitation because of their closeness to the
equator (Burkart et al. 2014). However, there is the emer-
gence of drier climatic areas with declining rainfall towards
latitude 23.5° north and south away from the equator due to
the influence of the subtropical high-pressure system (Aw)
and transition from type ‘A’ to type ‘B’ arid climates. Gen-
erally, regions at high altitudes have lower temperatures,
typical of warm temperate-type ‘C’ climates (Kottek et al.
2006).

The weather and climate of tropical Africa varies with
geographical location and is influenced by topography, prox-
imity to large water bodies and movements of the Intertropi-
cal Convergence Zone (ITCZ; Odekunle et al. 2005; Olu-
wafemi et al. 2023). There are two major seasons in tropical
Africa: rainy and dry seasons. The rainy season in Central
and West Africa, e.g. Nigeria and Congo, start from April
to October, with annual rainfall of 1,000—2,500 mm. The
dry season lasts from November to March (Adeniyi and
Oyekola 2017; Odekunle et al. 2005; Adegebo 2022). East
Africa, e.g., Kenya and Ethiopia, is characterised by two
rainy seasons—the long rainy season from March to May
and the short rainy season from October to December, with
an average rainfall of 500—1,500 mm. The dry season in
this region occurs between the two rainy seasons and after
the short rains (Camberlin and Philippon 2002; Cattani et al.
2018). Generally, the dry season is characterised by lower
humidity, less cloud cover, and little or no rainfall. Tropical
Africa generally experiences a warm climate, with tempera-
tures ranging from 25°C to 30°C (Odekunle et al. 2005).
However, there are temperature variations; for instance,
highlands, e.g., Ethiopian highlands, have lower tempera-
tures, below 20°C (Camberlin and Philippon 2002). Coastal
regions have more consistent temperatures, influenced by
oceanic currents, with an average monthly temperature of
31-C and 32-C in February and March and reaching their
lowest temperature of 27°C to 28°C in July and August
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Table 1 (continued)
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the outbreak was associated with a 5.2% increase in the

number of cholera cases
80.1 per 1,000 for infants and 18.8 per 1,000 for children

1993 36°C

1989

Upper river division, Gambia

Jaffar et al (1997)

aged 1-4 years

(Oluwafemi et al. 2023). The Sahelian Region at the north-
ern fringes can experience more extreme temperatures over
40°C in March and April due to its proximity to the Sahara
Desert (Agada and Yakubu 2022).

Search approach

Literature searches were performed in the Web of Sci-
ence (WoS) to identify research articles on the association
between extreme heat and human health in tropical Africa.
The search terms were narrowed to peer-reviewed articles
written in English. 5,735 publications were initially identi-
fied. Searches included all publications in the WoS data-
base up to and including December 2023. Table 2 shows
the keywords and search terms that were used to search “All
fields” in the WoS database, which included health outcomes
that are commonly referred to in heat health studies (e.g.
human health, heat-related mortality) and several climatic
and biometeorological climate variables that broadly cover
the totality of the effect of weather and climate associated
with extreme heat on temperature-related health by account-
ing for temperature, humidity, wind speed and radiation (e.g.
high temperature, Wet Bulb Globe Temperature (WBGT),
Universal Thermal Climate Index (UTCI); see Gosling et al.
(2014) for definitions).

A preliminary scan of the articles identified after con-
ducting the searches listed in Table 2 was undertaken to
eliminate studies that examine non-human impacts, such as
those on plants and animals. A manual check on the articles'
titles, abstracts, and main text was undertaken for further
screening using the inclusion criteria below:

1. Studies carried out in any part of a country located
between the tropics in tropical Africa, which focused
on the effects on human health from increasing tem-
perature, extreme heat, or heatwaves, and considered
humidity, wind speed, solar radiation, or hot climate.

2. Studies carried out in any part of a country located
between the tropics in tropical Africa, which have con-
sidered the effects of heat as modifiers of deaths/infec-
tions from malaria, Trypanosomiasis, Schistosomiasis,
and other infectious diseases.

After removing duplicate entries and articles due to study
area location and the 2 inclusion criteria, 100 articles met
the requirement for this review as shown in Fig. 2.

Studies identified by the review

The number of studies on the effects of heat on human
health, organised by country in tropical Africa, is shown
in Table 3. Many studies have been conducted in Nigeria,
Ghana, Kenya, Tanzania and Burkina Faso, Gambia, and



International Journal of Biometeorology (2024) 68:1015-1033

1019

-40 -20 0 20 40 60
1 1 1 1 1 1
8| ']
Mali
Capedlerde em;;&r{‘ﬁ‘é - r — . ’</
Guil ".: i Burkina Fesﬂrl AR
umea % L
h, Ny aenm‘
0L compreoi
i Wory Coas
ot =
o o
Combras
Mayotte ‘;\
v
b
- N Wadagascar Maugtius -
=] ‘r!' y Reusion S
b { r b
3 y
Legend : w
() African Countries : =
"=~ South Afri
o Tropical Africa and Sub-regions 8 m'@"
) SouthAfrica: Angola, Botswana, Malawi, M oczambique, Namibia, Zambia, Zimbabwe
£ Indean Ocean Islands: Comoros, M adagascar, Mauritius, Mayotte, Reunion, Seycnelles
(\_) East Africa: Djibouti, Eritrea, Ethiopia, Kenya, Somalia, Sudan, South Sudan,Tanzama, Uganda
o € Central Africa:Burundi, Cmeroon, CAR, Chad, Congo, DRC, Equatorial Guinea, Gabon, Rwanda, Sao Tome and Principe Fo
¥ ':] West Africa: Benin, Burkina Faso, Cape Verde, Cote d'lvoire, Gambia, Ghana, Guinea, Guinea Bissau, Liberia, Niger, Nigeria, Mali, Mauritania Senegal, Sierra Leone, Togo ¥
[= = km
0 15 30 60 90 120 150 180 210
T T T T T T
-40 -20 0 20 40 60

Fig. 1 The tropical Africa region considered in this review

Table 2 Keywords search terms across all fields in the WoS database

Keywords search term

Results from
the search terms
(WoS)

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND "heat stress."

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND “human health."”

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND “heat related mortality."

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND “heat related morbidity."”

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND “thermal comfort."”

(extreme heat OR humidity OR WBGT OR apparent temperature OR wind OR Heat Index OR Humidex OR UTCI OR
heatwave OR high temperature OR hot climate) AND “heat rashes.”

316

1, 688

396

943

2176

216

South Africa. Only one or two studies have been published
for many countries. There were no studies done in the fol-
lowing 17 tropical African countries: Niger, Chad, Maurita-
nia, Ethiopia, Somalia, Eritrea, Togo, Ivory Coast, Liberia,
Sierra Leone, Guinea Bissau, CAR, Zaire, Tanzania, Angola,
Namibia, and Batswana. There have also been no studies

conducted in African Countries that are partially in the trop-
ics, such as Algeria (Tamanrasset Province), Egypt (Aswan
Governorate), Libya (Al Kufra), and Western Sahara. 9(9%)
studies are multi-country, encompassing a wide range of
environments, socioeconomic and populations, 5(5%) of
which were conducted in West Africa and 1(1%) in Central

@ Springer
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Fig.2 The literature search
procedure

search engine: =5, 735

Articles identified from WoS

Articles excluded due to
pre-print, duplicate, title
and abstract =5, 300

—_—

Potential eligible articles =435

Articles excluded due to
study area location and
non-human impacts such
as plants and animals =
335

I

Articles that

meet
requirements for the review = 100

the

Africa. 1(1%) study was conducted in Kenya, Zambia, and
Zimbabwe; Guinea, Gabon, the Democratic Republic of
the Congo, South Sudan, and Uganda; and Kenya, Uganda,
Rwanda, Burundi, Tanzania, Zambia, Malawi, and Mozam-
bique. A multi-country study offers a more reliable under-
standing of tropical Africa's complex interactions between
heat and human health.

The temporal resolution of studies and the length
of time that they explored health impacts

The temporal resolution of the studies relates to whether the
data was collected daily, weekly, monthly, seasonal, annu-
ally, and future projections. The length of the study relates
to how long the studies investigate health impacts, i.e., how
many days or years of data were used for the study.

Concerning the temporal resolution of the data, 15 (15%)
of the studies project the future effects of heat on human
health (Lorena et al. 2018; Ragatoa et al. 2018; Fotso-
Nguemo et al. 2022). 25 (25%) studies used hourly, daily,
monthly, and seasonal datasets, e.g. Azongo et al (2012)
and Faye et al (2021) studied heat exposure on a daily scale.
Brewster and Greenwood (1993) and Frimpong et al (2014)
explored seasonal scale variations. 43 (43%) of the studies
are based on annual and multi-annual scales. These were
heat-health studies lasting years or decades. For example,
studies by Etard et al (2004) and Fotso-Nguemo et al (2022)
cover 11 and 39 years, respectively.

It may be argued that studies founded on annual and
multi-annual scales, as opposed to daily, weekly, monthly, or
seasonal studies offer a better extrapolation of the association

@ Springer

between extreme heat and human health because it enables
a more accurate assessment of the effects and changes over
time. This depends on whether the study is a clinical trial
assessing the immediate effects of excessive heat over a
relatively short period or a cohort study exploring the long-
term health effects of extreme heat to monitor the change
over time. For instance, case-crossover studies are a type of
observational research design commonly used in epidemiol-
ogy and public health to investigate the association between
an exposure such as heat exposure and an outcome such as a
health outcome, these studies are beneficial for studying the
acute effects of transient exposures on short-term outcomes.

Methods and technologies for data collection
and analysis

Systematic data collection from weather stations is often
used (Olatunde 2016; Azongo et al. 2012; Luque Fernandez
et al. 2009) while other studies use data from remote sens-
ing, for example Wiru et al (2020), Mutai (2013), and Paz
(2009) used satellite data from the National Climate Data
Centre of the National Oceanic and Atmospheric Adminis-
tration. Herold et al (2017). Balogun and Balogun (2014),
Kwasi et al (2014), and Balogun and Daramola (2019) used
a Shielded portable Lascar EL-USB-2 data logger for col-
lecting observed temperature and relative humidity data.
Some experiments utilised technological data observations
concerning the data type, such as temperature and relative
humidity, from a weather station or a Shielded portable
Lascar EL-USB-2 data recorder (Adeniyi 2009; Frimpong
et al. 2016; Balogun and Daramola 2019). Due to their cost,
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Table3 The number of studies on the effects of heat on human
health, organised by country

Number
of stud-
ies

Study location

Nigeria 22
Ghana 13
Kenya

Tanzania

Burkina Faso

A N oo \©

Gambia
South Africa 14
Senegal

Zambia

Zimbabwe

Uganda

Democratic republic of Congo

Cameroon

Mozambique

Malawi

Burundi

Rwanda

Sudan

Mali

Gabon

Guinea

Benin

West Africa

Central Africa

Kenya, Zambia, and Zimbabwe

Guinea, Gabon, DRC, South Sudan, Uganda

Kenya, Uganda, Rwanda, Burundi, Tanzania, Zambia,
Malawi, Mozambique

— ke = s ks s ek kR W W WA

portability, and convenience, the use of Lascar USB tem-
perature and humidity sensors with a calibrated Questemp
heat stress monitor for daily, monthly of seasonal studies has
increased in recent years (Balogun and Balogun 2014; Kwasi
et al. 2014; Frimpong et al. 2016). Other research methods
include questionnaires, surveys, and FGD (Ngwenya et al.
2018; Frimpong et al. 2020; Nunfam 2021). Nevertheless,
some studies rely on hospital health data (Etard et al. 2004;
Diboulo et al. 2012; Wiru et al. 2020).

13 (13%) of the articles cited in this review utilised rea-
nalysis and climate models to simulate past, present, and
future heat-human health relationships. 5 (5%) of studies
explored future projections of heat stress, high temperature,
relative humidity, heatwaves, and extreme heat on human
health (Ermert et al. 2012; Sylla et al. 2018; Sarr et al. 2019;
Gyilbag et al. 2021; Ragatoa et al. 2018). Reanalysis and cli-
mate models provide spatially gridded, historical and future
climatic data, essential for studying long-term trends and

potential future scenarios of heat impacts on human health
across large spatial domains, aiding public health planning
and climate change adaptation strategies. The output from
these models often contains uncertainties due to assump-
tions and limitations in data and might not accurately capture
local variations, leading to less precise assessments at local
scales. 6 (6%) of the cited studies are at the regional scale,
e.g. (Blom et al. 2022, Adeniyi and Oyekola 2017, Sylla
et al. 2018, Batté et al. 2018; Ermert et al. 2012) covered
West Africa, whereas Fotso-Nguemo et al. (2022) covered
central Africa.

Several studies have used high resolution regional climate
model simulations to estimate the effects of different green-
house gas emissions scenarios on future health in tropical
Africa. Some studies have used climate projections from the
recent Coordinated Regional Climate Downscaling Experi-
ment (CORDEX) program (Sarr et al. (2019), Ragatoa et al.
(2018), Sylla et al. (2018), Gyilbag et al. 2021) and Adeniyi
and Oyekola (2017)), for either Representative Concentra-
tion Pathway (RCP) greenhouse gas scenarios or global
warming scenarios. Other studies have used the COSMO-
CLM regional climate model, e.g. Ermert et al. (2012) and
Fotso-Nguemo et al. (2022) considered a 1.5 °C global
warming scenario. Diouf et al. (2013) used two, older, SRES
emissions scenarios. No studies to date have considered the
latest SSP (Shared Socioeconomic Pathways) scenarios and/
or simulations from CMIP6 climate models (Coupled Model
Intercomparison Project).

Over 47 (47%) of the identified studies employed descrip-
tive and inferential statistics to analyse daily, monthly, and
seasonal data from field surveys, FGD, questionnaires, and
interviews (Alaigba et al. 2018; Ngwenya et al. 2018; Nunfam
2021). Annual and multi-annual studies such as 30 years, fre-
quently employ time series, regression, and correlation designs
to directly compare health data with biometeorological factors
(Scott et al. 2017; Asamoah et al. 2018; Wiru et al. 2020).

Summary of the review findings

Table (Online resources 1) summarises studies on the effects
of extreme heat on human health in tropical Africa. Even
though most studies identified showed an increase in mor-
bidity and mortality in the hot/rainy season compared to the
cool season (e.g., Kynast-Wolf et al. 2006; Mutisya et al.
2010; Diboulo et al. 2012; Scott et al. 2017), studies in Bono
village of Ghana revealed an increased risk of death at the
lowest Apparent Temperature (18°C). Specifically, the high-
est relative mortality risk (RR=1.61, 95% CI: 1.21-2.15,
p-value <0.001) was observed three days after exposure
to an apparent temperature of 18 °C, indicating a substan-
tial increase in the risk of death compared to other appar-
ent temperatures studied such as the first quartile (23 °C),
third quartile (26 °C), and the highest apparent temperature
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(31 °C) that showed no significant relationship with mortal-
ity (Wiru et al 2020). In Botswana, Alexander et al (2013)
found that minimum temperatures were related to increase
Diarrhea occurrence. A study by Rayco-solon et al (2004)
revealed seasonality in death rates, with more deaths occur-
ring during the "hungry" season (July — November), marked
by the peak of agricultural work, depletion of food supply,
and a rise in infectious diseases. Diboulo et al (2012) noted a
substantial increase in deaths with heat intensification at lags
of 0 — 1 days. A temperature rise of 1.0°C at lag 0—1 was
associated with a 2.6% increase in mortality for all ages and
3.7% for children under five years, with people over 60 most
vulnerable to extreme heat. Asamoah et al (2018) found a
42% rise in the likelihood of suffering a miscarriage with
every degree rise in Wet Bulb Globe Temperature (WBGT),
suggesting a connection between atmospheric heat exposure
and adverse pregnancy outcomes in Accra. It was also dis-
covered that an increase in Temperature to over 40°C during
summer could affect the population who spend long hours
in the heat, such as street vendors (Ngwenya et al. 2018).

Frimpong et al (2020) found that heat stress consider-
ably influences farmers in Bawku East of Northern Ghana,
with malaria and heat cramps identified among the recur-
ring diseases. Nunfam et al (2019a) established a relation-
ship (p <0.05) between historical climate change threat
awareness and work-related heat stress and the variance in
educational accomplishment in the dissemination of cop-
ing approaches to work-related pressure from extreme tem-
peratures. This agrees with the conclusions of Nunfam et al
(2019b), who found a major variation in temperature-related
morbidity with the type of mining activities among work-
forces in five mining spots in Western Ghana. Temperature
and precipitation have altered the growth rates and survival
of malaria pathogens. Several studies have demonstrated
a decline in the spread of malaria in West Africa because
of climate change-related increases in temperature and a
decrease in precipitation (Ermert et al. 2012). In contrast,
McGregor et al (1961), Lawoyin (2001), Reyburn et al
(2011), and Ifatimehin and Ujoh (2014) observed a rise
in morbidity or death during the rainy/hot season. Daniel
(2015) reported a significant relationship between extreme
temperature, rainfall, and heat rash.

Socioeconomic factors that contribute to population
vulnerability to heat

Three (3%) of the articles identified in this review examined
socioeconomic characteristics that contribute to increasing
population vulnerability to heat. Grace et al (2012) consid-
ered the influence of education, home water supply, floor
material, and livelihood zones to explore the association
between surface temperatures, rainfall, and stunting in chil-
dren under 5 years. Ibu and Bisong (2021) explored the
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urban bioclimatic discomfort index in Calabar, Nigeria,
using socioeconomic and demographic parameters such as
the urban heat island effect, age sensitivity, biophysical and
sociocultural data, urban planning, and health. The study
emphasises the need to integrate age and urban environmen-
tal factors in measuring vulnerability to heat discomfort in
cities. Oluwafemi et al. (2023) considered the urban heat
island, population density, age and health conditions such as
elderly, young children, people with chronic diseases or dis-
abilities, and low-income populations that have less capacity
to adapt, as well as living conditions of people in informal
settlements and areas with less vegetation. The study identi-
fied critical heat risk zones covering approximately 423 km?
in in densely populated areas.

Including demographic and socioeconomic factors is
crucial in heat-human health studies because different age
groups, health statuses, and socioeconomic classes have dif-
ferent sensitivities to heat, affecting their health differently.
High population densities, especially in urban areas, exac-
erbate the urban heat island effect, which increases health
risks. Socioeconomic status influences access to cooling
resources, healthcare, and information on extreme heat,
which is essential for mitigating heat-related health risks.
Understanding these factors aids in developing targeted
strategies to protect the most vulnerable populations from
heat-related health issues.

Lag effects

The "lag period" refers to the time delay, often measured
in days, between exposure to high temperatures and the
observable health effects due to exposure. Lag periods vary
between studies, e.g. 19 (19%) of the articles cited in this
study observed a lag period of 0-28 days, 3 (3%) observed
a lag period of 6-8 weeks, and 10 (10%) 1-10 months. 68
(68%) of the studies did not calculate a lag period. Faye
et al. (2021) found that the relative mortality risk varied
across different lags, e.g. the relative risk was below 1.0 at
lag O days, indicating no immediate significant risk increase.
Howeyver, a noticeable increase in relative risk was observed
between lags 6 to 12 days, with the highest relative risk
appearing at lags 8 and 9 days. The effect varied across dif-
ferent demographics, with significant associations among
male mortality at lags 11 to 18 days and for female mortal-
ity at lags 7 to 14 days. Children aged O to 5 years showed
significant risk at lags 8 to 14 days, and people aged 55 years
or above were at a higher risk at lags 7 to 16 days. Interest-
ingly, no significant association was observed for the age
group of 6 to 54 years across different lags. This lag effect
demonstrates the delayed impact of heat waves on mortal-
ity, highlighting the importance of considering varying time
frames when assessing the health impacts of heat exposure
in different demographic groups.
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Various approaches have been used for estimating the
lag period. The distributed lag nonlinear model (DLNM)
is the most widely used, e.g. Nyadanu et al (2023), Bunker
et al (2017), and Wiru et al (2020). The DLNM assesses the
nonlinear association between heat exposure and mortality
over different lag days, with a maximum lag of 25 days con-
sidered. This approach is useful for estimating heat waves'
nonlinear and delayed effects on mortality. Nyadanu et al
(2023) investigated the delayed effects of long-term heat
stress on stillbirth rates in Ghana, using a DLNM to ana-
lyse the nonlinear exposure-response relationship and the
time-structured lagged effects of heat stress. This approach
is essential to understand the complex interplay between
environmental factors like heat stress and adverse preg-
nancy outcomes. Egondi et al. (2012) employed a DLNM
to understand the association between daily maximum
temperature and Years of Life Lost. The study observes a
J-shaped exposure—response curve, indicating a significant
increase in YLL associated with cold temperatures. The
study also explored the lag effect of temperature on YLL,
showing that the impact of cold temperatures on YLL was
observed mainly within the first five days after exposure.
The study revealed no significant added impact of cold spells
or heat waves on YLL beyond this lag effect. Bunker et al
(2017) investigated the impact of heat exposure on non-
communicable disease years of life lost (NCD-YLL) in rural
Burkina Faso from 2000 to 2010. It uses a daily time series
regression analysis with DLNMs. The key finding was that
moderate to extreme heat exposure significantly increases
premature deaths from NCDs. The most pronounced health
effects were observed on the day of heat exposure, with a
diminishing impact over the following four days. This lag
effect demonstrates heat exposure's immediate and short-
lived impacts on NCD-related mortality. Wiru et al (2020)
used a DLNM to analyse the relationship between daily
mean apparent temperature and all-cause mortality. The
study found a nonlinear association, observing increased
mortality risks at lower temperatures, especially from lag
2 to 4 days after exposure, with the highest risk occurring
3 days after exposure. This lag effect illustrates the delayed
impact of temperature changes on mortality risks. The study
also notes sex-specific differences in the temperature-mor-
tality relationship.

Poisson regression is also often used to assess lag effects.
Luque Fernandez et al. (2009) used a Poisson autoregres-
sive model to analyse the relationship between the weekly
number of cholera cases and climatic variables. The study
found a significant association between the increase in chol-
era cases and a rise in temperature 6 weeks prior, as well as
an increase in rainfall 3 weeks before. Azongo et al (2012)
used a time-series Poisson regression approach to analyse
the short-term associations between mortality and mean
daily temperature. They found a significant association at

various lag days, indicating that temperature variations can
have delayed effects on mortality.

Distribution of studies based on urban, rural,
and informal settlements.

The review identified 34 studies (34%) focusing on urban
areas. 21 studies (21%) were carried out in rural areas. The
remaining 45 studies (45%) assessed the association between
ambient temperature or heat waves and mortality in urban
and rural areas. Table 4 summarises studies that have been
conducted in urban and rural areas of tropical Africa. Some
studies compared urban and rural populations based on their
sensitivity to extreme heat (Nunfam et al. 2021; Jankowska
et al. 2012; Alexander et al. 2013). Fewer studies were car-
ried out in rural areas compared with urban, with the rural
areas of West Africa having more studies relative to other
regions. Together these studies revealed the harmful influ-
ence of heat on human health, behaviour, and productivity
among farmers, labourers, and mining workers in rural com-
munities (Nunfam 2021). While populations have diverse
responses and coping mechanisms to heat exposure, these
are inefficient in preventing heat-related morbidity and mor-
tality at both the household and farm levels (Frimpong et al.
2020). Urban centres are known for their heat impacts on
human health due to their propensity to create heat islands.
The urban heat island (UHI), whereby temperatures in urban
areas are higher than in the surrounding rural regions, exac-
erbates the influence of heat on human health (Sheridan
and Allen 2015). Urbanisation is the leading cause of urban
sprawl. Urban sprawl has led to the growth of informal set-
tlements that house low-income populations in many Tropi-
cal African cities.

Informal settlements are an essential feature of tropi-
cal African cities, commonly identified as unplanned and
densely-packed low-rise buildings with a high population
(Yahia et al. 2018). The dwellers of informal settlements are
more sensitive to the impact of extreme heat due to their low
adaptive capacity, e.g. Lorena et al (2018) found an increase
in non-communicable diseases in children, deteriorating
mental health, and occupational hazard in adults of informal
residences with low income due to extreme Temperature.
The informal settlements are densely packed housing with
poor building materials that lack access to public services
and amenities, making their population particularly vulner-
able to heat (Scott et al. 2017). The disparities in the designs
of built-up expansion, vegetation and construction materials
in cities can differentially affect the threat of heat-related
morbidity and mortality. For instance, Egondi et al (2012)
found that the extreme heat experienced in the neighbour-
hood of the informal settlements was more than the ambient
temperature recorded in the nearest weather station by sev-
eral °C. A study by Scott et al (2017) employed iButtons — an
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inexpensive device for measuring temperature and relative
humidity, to investigate heat variations in an informal set-
tlement in Nairobi. Both Scott et al (2017) and Egondi et al
(2012) recognised that poor populations were at greater risk
of extreme heat than wealthier populations, highlighting the
social inequalities that exist in heat exposure and adverse
health outcomes. There are, however, very few empirical
studies on the vulnerability of human health to heat, particu-
larly in the informal settlements of tropical Africa (Pasquini
et al. 2020). Even though climate threat is projected for the
African continent (Dosio 2017), studies in Zimbabwe have
shown that informal settlements and urban outdoor workers
are more vulnerable to extreme heat (Ngwenya et al. 2018).
To this end, very little is known about the vulnerability to
heat in tropical Africa.

Health outcomes

The primary health outcomes of the studies cited in this
review are health risks associated with increased tempera-
tures and heat stress (Joseph and Demot, 2021; Morakinyo
et al. 2016; Van de Walle et al. 2022; Gratien Kiki et al.
2020; Mabuya and Scholes 2020; Sylla et al. 2018; Wright
et al. 2022). For instance, Mushore et al. (2017) identi-
fied outdoor thermal discomfort in densely built-up areas,
and Ndetto and Matzarakis (2013), Ndetto and Matzarakis
(2017) and Sarr et al (2019) found heat stress and thermal
discomfort to be the major health issues during the hot sea-
son leading to heat exhaustion, heatstroke, and overall dis-
comfort affecting daily activities.

The review highlights the myriad of ways by which
extreme heat affects human health, through different and
varied health outcomes. Several studies report an increase
in the incidence of diarrhoea, respiratory infections, malaria,
and physiological stress associated with heatwaves, heat
stress and extreme temperatures (Omonijo et al. (2011),
Adeniyi and Oyekola (2017), Thandi et al. (2018), Njoku
and Daramola (2019), and Adeboyejo et al. (2012)). Dukic
et al. (2012) and Tunde et al. (2013) observed an increase in
the prevalence of asthma, malaria, meningitis, and typhoid
fever due to temperature, relative humidity, and air quality.
Other studies have reported that increasing temperatures
and relative humidity exacerbate heatstroke, heat stress,
heat cramps, heat exhaustion, dehydration, kidney failures,
acute meningitis, productivity loss, anxiety, increased risk
of malaria and effects on social well-being among outdoor
workers (Frimpong et al. (2014), Nunfam (2021), and Frim-
pong et al. (2020)).

The review also identifies several health outcomes,
specifically relevant to children. Sylvia Blom et al (2022)
found increased chronic and acute malnutrition in children
due to extreme heat exposure. Scorgie et al (2023) found
an increased risk of heat-related health issues such as heat

exhaustion, dehydration, and potential impacts on foetal
health. Nyadanu et al (2023) identified an increased risk of
stillbirth associated with exposure to long-term heat stress.
Bonell et al (2023) suggests that reducing maternal expo-
sure to heat stress and strain will likely reduce foetal strain,
potentially decreasing adverse birth outcomes.

Some studies have shown how extreme heat dispropor-
tionally affects the elderly and female population, e.g. Faye
et al (2021) found that heat waves lasting three or more con-
secutive days increase the risk of death, with the elderly over
55 years and females being more affected.

Priorities for reducing the health impacts
from extreme heat

There is a need for a more detailed analysis of cause-specific
mortality to understand better and address regional seasonal
mortality patterns in tropical Africa (Ndetto and Matzarakis
2013; Ndetto and Matzarakis 2017; Lawoyin 2001; Kynast-
Wolf et al. 2005; Mutisya et al. 2010; Diboulo et al. 2012;
Azongo et al. 2012; Mrema et al. 2012; Scott et al. 2017;
Wiru et al. 2020).

Several studies emphasise the importance of integrat-
ing tree planting and urban greening in building and urban
design and materials to enhance thermal comfort and ven-
tilation to enhance thermal comfort and reduce health risks
associated with extreme temperatures, particularly in regions
where heat stress has a major impact on human health and
productivity (Omonijo et al. (2013), Morakinyo et al. (2014),
Njoku and Daramola (2019), Mushore et al. (2017), Mabuya
and Scholes (2020) and Van de Walle et al. (2022)). Wright
et al (2022) emphasise the need to develop climate-proof
housing and improve access to essential services to support
resilient coping mechanisms, particularly in rural areas,
during heatwaves. Ndetto and Matzarakis (2013) prioritise
adapting urban planning and architectural design to miti-
gate heat stress, including optimising street orientation, and
building heights to enhance thermal comfort in urban areas.

Moreover, several studies have underscored the impor-
tance of implementing effective adaptation measures
(Egondi et al. (2012), Dukic et al. (2012), Adeboyejo et al.
(2012) and, Adeniyi and Oyekola (2017), Sarr et al. (2019)).
These include enhancing public awareness, improving public
health infrastructure, developing health action plans, enhanc-
ing disease surveillance and response systems, increasing
community awareness, preparedness and education on health
risks associated with climate change, and targeting children.

This review also finds that further research is needed
to quantify better the impact of warming on socioeco-
nomic activities and health, to inform more targeted and
efficient adaptation strategies, which is crucial for mitigat-
ing the adverse effects of heatwaves and extreme tempera-
tures on human health. Sylvia Blom et al (2022) suggested
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implementing healthcare and nutrition program strategies to
reduce the impact of rising temperatures on child nutrition.
Adeniyi and Oyekola's (2017) argue that improving regional
climate modelling is a priority for better prediction of heat
waves. Tunde et al. (2013) recommend public awareness and
education about climate variability and its effects on health
through broadcasting weather reports and educating people
on the impacts of anthropogenic activities on the climate.

Additionally, practical measures using mosquito nets,
clearing stagnant water, and avoiding residing near riverbeds
are suggested to reduce the risk outcomes from future heat-
waves. Future priorities for minimising these risks involve
implementing heat stress management strategies, enhancing
workplace heat stress policies, and improving awareness and
training about heat-related health risks among outdoor work-
ers (Ngwenya et al. 2018; Nunfam 2021). Future priorities
for reducing these health risks include developing effective
heat wave early warning systems and public health strategies
tailored to the needs of the most vulnerable groups, such
as the elderly, children, and female population, to enhance
preparedness and response to heat waves and mitigating their
impact on human health (Faye et al. 2021).

Adapting to extreme heat should take account of evi-
dence from this review that extreme heat can affect female
populations more (Faye et al. 2021). Scorgie et al (2023)
emphasise the importance of developing culturally appro-
priate adaptation strategies to reduce heat risks for preg-
nant women. These strategies should consider local gender
dynamics to empower women, enhance their autonomy, and
improve community support during hot seasons. Nyadanu
et al (2023) emphasise the need for public health and climate
governance strategies to reduce maternal exposure to heat
stress, particularly in rural areas, to lower the risk of still-
birth. These strategies may include developing heat stress
warning systems, improving maternal healthcare services,
and enhancing awareness and education about the risks of
heat exposure during pregnancy. Bonell et al (2023) pri-
oritises further research to explore the association between
heat stress and pregnancy outcomes in various settings and
populations, aiming to develop effective interventions.

Opportunities for improving study methodologies

The majority of studies cited in the review obtained the cli-
mate data from traditional weather stations (Trerup et al.
2011; Reyburn et al. 2011; Adeniyi 2009; Eludoyin 2014;
Dukic et al. 2012), which means the estimates of climate
are not necessarily identical to the conditions experienced
by the population. This is because people experience ther-
mal discomfort indoors as well as outdoors, in distinct loca-
tions which may be a significant distance from the outdoor
weather station. Our review has highlighted the importance
of understanding thermal stress in informal settlements, yet
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temperatures are rarely monitored in these settings. Moreo-
ver, many urban areas of tropical Africa lack dense in-situ
monitoring networks that can provide air temperature data
at high spatial resolution.

Advances in technology offer an opportunity to address
some of the methodological gaps discussed above. It is pos-
sible to measure climatic conditions more closely to the
populations being affected, even at the individual person
level. For example, few studies have used wearable devices
such as iButtons that collect data on air temperature, humid-
ity, and UV radiation (Scott et al. 2017; Mabuya and Scholes
2020; Van de Walle et al. 2022) or EasyL.og-USB and Lascar
USB temperature and humidity sensors (Kwasi et al. 2014;
Balogun and Balogun 2014; Frimpong et al. 2016; Kiki et al.
2020). Moreover, recent technological advancements have
led to the development of intelligent sensors like micronee-
dles, skin patches, tattoos, and stretchable electronics. These
devices can monitor various physiological parameters,
including sweat rate, sodium levels in sweat, skin tempera-
ture, and heart rate (Paulo Silva Cunha 2018) and facilitate
the creation of Internet of Things (IoT) networks to measure
environmental conditions (Chapman 2015).

Remotely sensed data from satellite observations pro-
vide greater spatial coverage of land surface temperatures
than what can be achieved with traditional weather station
data. However, only 2% of the articles cited in this review
used freely accessible satellite thermal imagery to map
land surface temperature (Ifatimehin and Ujoh 2014; Scott
et al. 2017; Mushore et al. 2017; and Van de Walle et al.
2022). Thermal bands of satellite imagery such as Landsat,
MODIS, and Sentinels, provide datasets with spatial resolu-
tion from 10 m to 1 km, enabling potentially high resolu-
tion thermal mapping in urban areas. Although Landsat 5-9
imagery has good spatial resolution (100 m), the image is
acquired at 10.00 am, which is unsuitable for heat-human
health studies because maximum temperatures occur later
in the day and minimum temperatures earlier. Although sat-
ellites can provide high resolution temperature data, they
provide estimates of land surface temperature, which is not
the same as air temperature, and a conversion is necessary
(Anderson et al. 2021; Wang et al. 2022; Khan et al. 2022).

Conclusions

The evidence gathered from 100 articles in this review
revealed that dehydration, discomfort, and heat-related
morbidity and death increased during high temperatures
or heat waves. The harmful effects of extreme heat on
human health in tropical Africa include declining men-
tal health in adults of low-income residents (LLorena et al.
2018), an increase in miscarriage risk with each degree
of temperature rise (Asamoah et al. 2018), and effects
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on the safety and well-being, psychological behaviour,
productivity, and social comfort of outdoor workers who
spend long hours performing manual labour (Nunfam et al.
2019a, b; Nunfam 2021). The findings of this study are
consistent with previous findings that higher temperatures
increase the incidence of morbidity. According to Liu et al
(2021b), renal disease rose by 10% for every 1°C increase.
Heat and mental health research evaluations show that
morbidity rose by 0.9% to 22% for every 1°C increase
(Liu et al. 2021a). According to Phung et al (2016), the
risk of cardiovascular hospitalisation increased by 0.7%.
According to Fatima et al (2021), occupational illnesses
and injuries increase by 1% for every 1°C increase in tem-
perature. Regarding morbidity or mortality, Faurie et al
(2022) reported over 100% increases in case numbers.
Given that more than 90% of urban population growth is
anticipated in Asia and Africa (UN-Habitat 2014), urbani-
sation and increases in the artificial impervious surface
are anticipated to impact the thermal environment due to
the destruction of vegetation cover and the expansion of
informal settlements. Almost 55% of Sub-Saharan Africa,
according to UN-Habitat (2014), resides in informal settle-
ments, which are more vulnerable to heat-related morbid-
ity and mortality due to their dense population and poor
living conditions. Heat-related health impacts are of con-
cern in tropical Africa, which is already facing substantial
heat stress due to the climate and environmental change
exacerbated by anthropogenic activities and increasing
greenhouse gas levels.

The impact of extreme heat on human health in tropical
Africa is worsened by the population's relative poor socioec-
onomic and demographic status and the environmental qual-
ity. Green spaces are an essential contributor to human well-
being. Studies have found that people dwelling in areas with
less vegetation cover are more vulnerable to heat-related
morbidity and mortality (Schinasi et al. 2018). Informal set-
tlements are characterised by poor physical infrastructure
and little vegetation cover, which influences the UHI effect
and increases night-time temperatures. Nighttime cooling is
essential for people to get a good night's sleep and recuperate
from the day's heat. There is a strong association between
amplified night-time heat and inadequate sleep; the conse-
quence is more prevalent among the lower-income and age-
ing population (Obradovich et al. 2017). Most of the studies
cited in this review reported increased heat-related morbid-
ity and mortality during the dry/hot season and the heat/
rainy season relative to the dry/cold season. For example,
the prevalence of infectious diseases, such as malaria and
diarrhoea, increased mortality in coastal towns of tropical
Africa during the hot/wet season (Greenwood 1993; Ifa-
timehin and Ujoh 2014). The common reasons for excess
mortality in these seasons are extreme heat and hygienic
environments. The increased rain usually overstretches the

sewage and drainage systems, leading to stagnant water and
a wet environment.

Moreover, stagnant water and a damp environment offer
numerous disease agents decent breeding and surviving
grounds. In addition, the heat/rainy season, characterised
by planting and growing crops, often coincides with the
time of least food supply and poor nutritional status of the
population (Rayco-solon et al. 2004). The dry/hot season
is the transition period between Harmattan and the heat/
rainy season in tropical African cities that border the Sahara
Desert. The dry/hot season exhibits excess mortality due to
extreme heat, increasing the time spent outdoors to try and
cool down. The poor population that cannot afford air con-
ditioning spends more time outside, making them vulnerable
to disease pathogens (Pasquini et al. 2020). Moreover, their
dwelling is usually overcrowded and poorly ventilated, lead-
ing to indoor air pollution, a significant cause of mortality
peaks in informal settlements. There is a further increased
risk of airborne disease and meningitis due to the Harmat-
tan dust from the Sahara Desert during the dry/hot season.
A common observation in most identified studies in tropical
Africa was the age dependency of morbidity seasonality.
Older people are at a higher risk of dying during the hot/
dry season (Daniel 2015; Scott et al. 2017), while children
below 9 years are most vulnerable to death in the heat/rainy
season (Kynast-Wolf et al. 2006). Human sensitivity and
ability to adapt to extreme heat's effects depend on the popu-
lation's demographic and socioeconomic status. Generally,
there is a link between the human dwelling environment,
the socioeconomic characteristics, and the adverse effects
of extreme heat.
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