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Abstract
The worldwide increase in temperature has resulted in a 
marked increase in heat waves (heat extremes) that carries a 
markedly increased risk for morbidity and mortality. The kid-
ney has a unique role not only in protecting the host from 
heat and dehydration but also is an important site of heat-
associated disease. Here we review the potential impact of 
global warming and heat extremes on kidney diseases. High 
temperatures can result in increased core temperatures, de-
hydration, and blood hyperosmolality. Heatstroke (both 
clinical and subclinical whole-body hyperthermia) may have 
a major role in causing both acute kidney disease, leading to 
increased risk of acute kidney injury from rhabdomyolysis, or 
heat-induced inflammatory injury to the kidney. Recurrent 
heat and dehydration can result in chronic kidney disease 
(CKD) in animals and theoretically plays a role in epidemics 
of CKD developing in hot regions of the world where workers 

are exposed to extreme heat. Heat stress and dehydration 
also has a role in kidney stone formation, and poor hydration 
habits may increase the risk for recurrent urinary tract infec-
tions. The resultant social and economic consequences in-
clude disability and loss of productivity and employment. 
Given the rise in world temperatures, there is a major need 
to better understand how heat stress can induce kidney dis-
ease, how best to provide adequate hydration, and ways to 
reduce the negative effects of chronic heat exposure.

© 2019 The Author(s) 
Published by S. Karger AG, Basel

Introduction

Increasing worldwide temperatures are now well docu-
mented, and the mean temperature increase in the last 50 
years approximates 0.8   ° Centigrade. While the absolute 
rise in temperature may not seem large, it is already hav-
ing major effects on human health [1]. One of the more 
striking consequences is a marked increase in extreme 
heat events, termed heat waves [2–4]. Heat waves are the 
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most common cause of mortality of all weather-related 
events in the United States (including tornados, hurri-
canes, and lightning strikes) [5]. Heat waves are also 
among the top 10 worldwide causes of death by natural 
disasters between 1980 and 2017 (Table 1). Different def-
initions have been used to classify heat waves, but one of 
the more common definitions is a temperature that is 5  ° C 
greater than the mean high temperature for a given day, 
and one that persists for at least 5 days [6]. Numerous 
studies have reported a dramatic increase in heat waves 
worldwide [7] (Fig. 1). For example, one estimate suggests 
that in 2015 alone there were 175 million more people ex-
posed to heat waves as a consequence of climate change 
[7]. Heat waves are dangerous not only because of the risk 
of overheating the human body but also due to increased 
mortality of individuals with cardiovascular and respira-
tory disorders [6]. One of the worse heat waves was the 
one that struck Europe in August 2003, resulting in 73,000 
deaths [8]. However, heat waves have caused significant 
mortality throughout the world, including Chicago in 
1995 [9], Andhra Pradesh in 2014 and 2015 [10, 11], and 
Karachi, Pakistan in 2015 [12]. Heat waves and extreme 
heat also affect labor performance and efficiency [13] and 
may affect crop performance [14]. Some heat waves have 
been associated with such extreme temperatures that even 
wildlife are endangered, and there are predictions that in 
the future some parts of the world could become so hot 
that they will become uninhabitable [15–17]. Thus, regu-
lating body temperature is a key to survival. Maintaining 
a well-hydrated state is critical to this process, but it is of 
additional concern that the availability of safe water sup-
plies is dwindling worldwide. Indeed, there is now evi-
dence that as much as 10% of the world population faces 

a serious shortage of water availability [18, 19]. In addi-
tion, studies suggest that many individuals, including chil-
dren and adolescents, who do have access to potable water 
are considered to be underhydrated [20]. 

In this review, we discuss the effect of climate change 
on diseases of the kidney. The kidneys have a supreme 
function in maintaining blood volume to support blood 
pressure as well as extracellular and intracellular osmolal-
ity (“the internal milieu”) that allows for normal metabo-
lism. One of their more important functions is urinary 
concentration, in which it minimizes fluid loss while as-
suring the excretion of nitrogenous wastes. Unfortunate-
ly, the high metabolic work, as well as the concentrated 
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Fig. 1. Change in heat wave exposure (in 
individuals > 65 years old) relative to the 
1986–2008 average. Here heat waves are 
defined as a period of 3 days or more in 
which the minimal temperature exceeds 
the 99th percentile of the average tempera-
ture between 1986 and 2008, and the popu-
lation was limited to individuals 65 years or 
older. Reused with permission from the 
Lancet [7].

Table 1. The most fatal natural disasters between 1980 and 2017

Event (location, date) Deaths

Tsunami/Earthquake (Thailand, 2004) 220,000
Earthquake (Haiti, 2010) 159,000
Cyclone, storm surge (Myanmar, 2008) 140,000
Cyclone, storm Surge (Bangladesh, 1991) 139,000
Earthquake (Pakistan, 2005) 88,000
Earthquake (China, 2008) 84,000
Heat wave, Drought (Europe, 2003) 70,000
Heat wave (Russia, 2010) 56,000
Earthquake (Iran, 1990) 40,000
Earthquake (Iran, 2003) 26,000

Adapted from data published by Münchener Rückversiche-
rungs-Gesellschaft. Heat waves accounted for the 7th and 8th most 
fatal natural disasters during this period. From: https://www.mu-
nichre.com/site/corporate/get/params_E1716525033_Dattach-
ment/1707976/munichre-natural-catastrophes-in-2018.pdf.
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excretion of wastes, makes the kidney very susceptible to 
injury from climate change. Indeed, studies have reported 
that increasing temperatures translate into increased ad-
missions through the emergency room of a wide range of 
renal disorders, including acute kidney injury, chronic 
kidney disease (CKD), kidney stones, and urinary tract 
infections (UTIs) [21, 22]. Occupational exposure to heat 
stress has also been linked with higher incidence rates of 
kidney disease [23] and to a loss in productivity of work-
ers when their kidney function becomes compromised 
[13]. Here we discuss some of these associations as well as 
potential links with the epidemics of CKD of unknown 
origin in hot regions throughout the world.

Heatstroke and Acute Kidney Injury

One of the major health consequences of extreme heat 
is heatstroke, which results when one cannot adequately 
control body temperature, resulting in hyperthermia 
(typically defined as a temperature > 40.6  ° C, > 105°F) that 
can lead to delirium, coma, seizures, and multiorgan fail-
ure [5]. Heatstroke can occur during heat waves (termed 
epidemic or classic heatstroke) and also in association 
with exercise or labor in the heat (termed exertional heat-
stroke) [24]. 

Exertional heatstroke is especially common among 
military personnel, marathon runners [25–28], as well as 
workers in mines or agricultural fields (especially sugar-
cane) [29]. It is especially common among new workers 
who are not acclimatized and those that are overweight 
[29]. Epidemic heatstroke most commonly occurs in as-
sociation with heat waves and affects those vulnerable to 
illness, such as the elderly, those with obesity or diabetes, 
those who are malnourished, individuals who have no air 
conditioning, and those with underlying cardiovascular 
or respiratory diseases. 

Both classical and exertional heatstroke can be severe, 
in which case they are characterized by confusion or de-
lirium, often coupled with acute liver and kidney failure. 
Indeed, acute kidney injury is a common manifestation 
in individuals presenting with epidemic heatstroke. For 
example, in the 1995 heat wave in Chicago, over 50% of 
those presenting with heatstroke had acute kidney injury 
[9]. While acute kidney injury may accompany severe 
manifestations with coma and liver failure, milder forms 
of heatstroke may be only associated with fevers and acute 
kidney injury.

There appear to be 2 types of acute kidney injury 
[24]. One form appears to be classical rhabdomyolysis 

(typically with creatine phosphokinase levels > 1,000 
µ/L), often associated with hyperuricemia and signs of 
dehydration. This form may be more common with ex-
ertional heatstroke. The other form is associated with 
normal or only mildly elevated creatine phosphokinase 
levels and is more common in epidemic heatstroke [24]. 
Indeed, unlike rhabdomyolysis, in which the injury ap-
pears more like an acute tubular injury, the second form 
of acute kidney injury clinically manifests more as an 
acute interstitial nephritis, with urinary leukocytosis 
and hematuria, and with a renal biopsy showing acute 
tubulointerstitial nephritis. It is thought that this condi-
tion results from ischemia, temperature-induced oxida-
tive stress, and decreasing intracellular energy stores 
[30, 31].

Heatstroke is also commonly associated with electro-
lyte abnormalities [24, 32]. One study of 66 subjects 
with exertional heatstroke reported acute kidney injury 
in 91%, hyponatremia in 53%, hypokalemia in 71%, hy-
pophosphatemia in 59%, hypocalcemia in 51%, and hy-
pomagnesemia in 35% [32]. In particular, the low serum 
potassium, phosphate, and magnesium were all associ-
ated with increased urinary excretion of these electro-
lytes, suggesting a tubular defect. Other potential causes 
include loss of sodium and potassium through the sweat. 
Some subjects also present with respiratory alkalosis, 
which is known to reduce serum phosphate, although 
metabolic acidosis appears to be more common.

Some individuals (10–30%) with heatstroke-associat-
ed acute kidney injury require dialysis [32]. If the patient 
survives the acute illness, kidney function usually returns 
to normal [32]. However, some cases of heatstroke may 
progress to CKD months later with the presence of chron-
ic tubulointerstitial nephritis on biopsy [33, 34].

Heat Stress Nephropathy as a Cause of CKD

In recent years, epidemics of CKD have been identified 
in various hot regions of the world where it preferentially 
affects workers who labor manually under extremely hot 
conditions [35]. One of the major sites of this disease is 
along the Pacific Coast of Central America, developing 
among sugarcane workers and others working in agricul-
tural communities [36]. There is evidence that this epi-
demic has been progressively increasing since the 1970s 
[37]. The observation that the disease tends to occur in the 
hotter regions of Central America, coupled with evidence 
that the workers are placed under a great deal of heat stress 
[38, 39], has led to the hypothesis that the disease may be 
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driven by global warming [40]. Indeed, a recent study sug-
gests that working in the sugarcane fields is associated 
with higher humidity due to the presence of the cane and 
that heat waves are driven not only by increasing mean 
temperatures but also by El Niňo events [41].

There is increasing evidence that the development of 
CKD may result from repeated acute kidney injury driven 
by subclinical or clinical heatstroke [42]. Specifically, re-
peated acute kidney injury has been recently reported 
across work-shifts in sugarcane workers from this region 
[43–46]. While most cases are asymptomatic, some sub-
jects present with fever, leukocytosis, leukocyturia, and 
acute kidney injury that may require admission to the lo-
cal hospital [47–49]. These latter cases resemble heat-
stroke, as they may present with similar electrolyte abnor-
malities and also with acute interstitial nephritis on bi-
opsy [47–49]. There is also evidence that some develop 
CKD over time [48], similar to that which occurs with 
exertional heatstroke [34]. 

Experimental studies support this association. In-
deed recurrent heat stress and dehydration can induce 
chronic inflammation and tubular injury in mice and 
rats [50–52]. The mechanism of the kidney injury is like-
ly related to increased internal body temperatures, the 
effects of hyperosmolarity to activate the polyol-fructo-
kinase pathway, and the chronic effects of vasopressin to 
induce tubular and glomerular injury [50–52]. In addi-
tion, clinical studies suggest that the effects of heat and 
dehydration induce a concentrated and acidic urine, 
which can also lead to urinary urate crystallization with 
tubular damage [53]. Indeed, some experimental data 
suggest that lowering uric acid might provide protection 
[54, 55].

Acute kidney injury is now being reported throughout 
the world in hot agricultural communities including In-
dia (Andhra Pradesh), Sri Lanka (north central province), 
Mexico (Vera Cruz), central Florida, and the Central Val-
ley of California [56–58]. In many of these areas, epidem-
ics of CKD are also being reported [59–61]. A major con-
cern is that these epidemics may be driven by increasing 
temperatures and heat waves, and that they may presage 
epidemics to come.

Other Effects of Heat Stress on the Kidney: Stones 
and Infections

Kidney stones (nephrolithiasis) are increasing in prev-
alence [62] and have also been proposed to result from 
increasing temperatures associated with climate change 

[63]. Heat stress and dehydration predispose to urinary 
concentration and low urine volumes that increase the 
risk for stones [64]. In the United States, for example, the 
“stone belt” that characterizes the hotter regions in the 
southern United States is projected to move northward as 
climate warming continues [63]. Experimental studies 
show that the primary kidney stone substance associated 
with heat stress is uric acid, due to its increased genera-
tion following exercise-induced muscle damage and the 
urinary acidification that occurs during the concentrat-
ing process [64]. 

UTIs may also be related to underhydration and po-
tentially affected by climate change. Indeed, a recent 
study found that increased daily water consumption 
could increase urine output and reduce the risk for UTIs 
[65].

Effect of Soft Drinks in Heat Stress-Associated 
Kidney Damage

Soft drinks contain fructose, a sugar that results in 
local tubular injury, inflammation, and oxidative stress 
when metabolized by the kidney [66]. Recent studies 
suggest that soft drinks may increase the risk for acute 
and chronic kidney injury [67]. Indeed, experimental 
studies have shown that rehydration with soft drinks 
could enhance kidney damage in dehydrated rats [51, 
68]. In addition to the injury associated with fructose 
metabolism, fructose may be able to stimulate vasopres-
sin that can then augment the renal injury [51, 69]. In-
deed, a recent clinical study also reported that rehydra-
tion with soft drinks could induce markers of kidney 
damage in healthy subjects following exercise in high 
temperatures [70], although epidemiologic studies con-
ducted in hot field settings to date have found no asso-
ciation.

Additive Effects of Toxins and Toxicants

A prevailing theory suggests that in the context of heat 
and dehydration, naturally occurring toxins and man-
made toxicants may concentrate in the kidney during pe-
riods of recurrent acute kidney injury. Candidates under 
investigation include potentially nephrotoxic agrochemi-
cals, heavy metals, use of nonsteroidal anti-inflammatory 
drugs, tobacco, and silica. Further research is ongoing, 
including environmental risk assessments that include 
meteorological conditions.
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Summary

In summary, while the kidney has a major role in pro-
tecting the host from the effects of heat stress, it is also a 
target for heat stress associated injury. The effects of heat 
can lead to both acute and CKD, electrolyte abnormali-
ties, and kidney stones and UTIs. As global warming 
continues, major efforts are required to assure adequate 
hydration and prevent overheating in vulnerable popula-
tions who are at risk for heatstroke. Heat warning sys-
tems, changes in occupational practices, and public 
health initiatives also are needed [71, 72]. Most impor-
tantly, scientific investigations should be directed at 
identifying how to slow, stop, and reverse global warm-
ing. 
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