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A B S T R A C T   

The importance of noise exposure as a major environmental determinant of public health is being increasingly 
recognized. While in recent years a large body evidence has emerged linking environmental noise exposure 
mainly to cardiovascular disease, much less is known concerning the adverse health effects of noise on the brain 
and associated neuropsychiatric outcomes. Despite being a relatively new area of investigation, indeed, 
mounting research and conclusive evidence demonstrate that exposure to noise, primarily from traffic sources, 
may affect the central nervous system and brain, thereby contributing to an increased risk of neuropsychiatric 
disorders such as stroke, dementia and cognitive decline, neurodevelopmental disorders, depression, and anxiety 
disorder. On a mechanistic level, a significant number of studies suggest the involvement of reactive oxygen 
species/oxidative stress and inflammatory pathways, among others, to fundamentally drive the adverse brain 
health effects of noise exposure. This in-depth review on the cerebral consequences of environmental noise 
exposure aims to contribute to the associated research needs by evaluating current findings from human and 
animal studies. From a public health perspective, these findings may also help to reinforce efforts promoting 
adequate mitigation strategies and preventive measures to lower the societal consequences of unhealthy 
environments.   

1. Brain-heart interactions in the context of noise exposure 

Environmental risk factors such as noise or air pollution contribute 
significantly to the burden of cardiovascular disease (CVD) (Hahad 
et al., 2019; Hahad et al., 2021). During the last decades, more people 
have transitioned to living in large urban areas where modifiable risk 
factors, such as noise, are an integral part of the physical environment 
and may independently facilitate the development of CVD (Kalsch et al., 
2014; Schmidt et al., 2015). The World Health Organization (WHO) 
estimates that at least 1.6 million healthy life years are lost every year in 
western European countries alone due to the environmental noise 
(Kempen et al., 2018). In an earlier publication from the (WHO, 2011), it 
was estimated that in western Europe, 61,000 disability adjusted life 
years (DALYs) were lost to noise-associated ischemic heart disease, 
45,000 to cognitive impairment in children, 903,000 to sleep distur-
bance, 22,000 to tinnitus, and 587,000 to annoyance. It was also 

independently determined that noise could cause these negative health 
issues such as annoyance (Miedema and Oudshoorn, 2001), sleep 
disturbance (Muzet, 2007), and CVD (Sorensen et al., 2012; van Kempen 
and Babisch, 2012). It is also well established that annoyance and sleep 
disturbance have a profound impact on mental health (Freeman et al., 
2020; Anderson and Bradley, 2013; Jensen et al., 2018; Beutel et al., 
2020; Dzhambov and Lercher, 2019). Chronic exposure to noise might 
be the driver of the observed risk to mental and cardio-cerebrovascular 
health, as prolonged exposure to excessive noise levels is a major risk 
factor in epidemiological studies (Lan et al., 2020; Eze et al., 2017; 
Heritier et al., 2017). Additionally, short-term noise exposure has been 
shown to have an impact on the cardiovascular system and stress re-
sponses as well (Schmidt et al., 2013; Walker et al., 2016). Studies have 
also emphasized the effects of noise in the impairment of the central 
nervous system (CNS) via increased oxidative stress, imbalance in 
neurotransmitter levels, deterioration of the molecular functions, 
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impaired cognition, and genetic modifications (Arjunan and Rajan, 
2020; Kroller-Schon et al., 2018; Munzel et al., 2017; Munzel et al., 
2020). Many questions remain unanswered, however, the most relevant 
is: to what extent is noise altering the molecular pathways of the brain 
and how can it disrupt neuronal function at the molecular level, leading 
to the development of CVD and neuronal disease? Since neuropsychi-
atric diseases reflect a major contributor the global burden of disease 

and public health costs, there is an urgent need to identify relevant risk 
factors and constellations, making environmental noise exposure a po-
tential target of prevention strategies (Riedel, 2016). In the present re-
view, we analyzed comprehensive evidence from human and animal 
studies on the cerebral consequences of environmental noise exposure 
affecting neuropsychiatric disease risk. We further report on central 
pathophysiological mechanism, which may act as a mechanistic link for 

Fig. 1. Noise reaction scheme. Noise causes physiological responses through two separate pathways (direct and indirect) that intersect through the arousal of stress 
responses. Upon chronic activation of stress response pathways, cardiovascular risk factors can emerge or be exacerbated and lead to cardiovascular disease. After 
stress, the release of CRH starts in the brain. Upon CRH uptake in the pituitary gland, ACTH is released to stimulate the adrenal gland into release of neurotrans-
mitters and glucocorticoids, which can cause direct effects on blood pressure and activate immune cells. Cytokines released by activated immune cells then feed back 
to the brain. CRH = corticotrophin-releasing hormone, ACTH = adrenocorticotropic hormone, RAAS = renin-angiotensin-aldosterone, ET-1 = endothelin-1. The 
scheme is adopted from (Munzel et al., 2021; Elenkov et al., 2000; Masi et al., 2019; Schlaich et al., 2009). Created with BioRender.com. 
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the observed clinical outcomes. 

1.1. The direct and indirect pathways of noise exposure 

In 2002, Babisch originated the idea that there could be two path-
ways through which noise could affect human physiology (Babisch, 
2002). This original idea has been refined and a noise reaction scheme 
was developed involving both a direct and indirect pathway (Fig. 1). The 
first, a direct pathway, encompasses effects that emerge through high 
sound pressure levels; loud noise will damage the hair cells, sensory 
receptors of the auditory system, and disrupt sleep (Le et al., 2017) 
(Table 1 displays examples of noise levels in terms of exposure to 
common sources). Approximately 16% of disabling hearing loss in 
adults worldwide has been caused by the effects of high noise via this 
direct pathway (Nelson et al., 2005). The direct pathway can also disturb 
sleep, which is a well-accepted cardiovascular risk factor (Lechat et al., 
2021; Coborn et al., 2019). On the other hand, the indirect pathway 
involves the cognitive and emotional response to a stimulus (i.e. feeling 
angry or annoyed) (Beutel et al., 2020; Beutel et al., 2016). Noise 
stimulates the limbic region of the brain to generate an emotional 
response (Spreng, 2000), leading to neuroendocrine arousal that affects 
the metabolic state (Henry, 1992). The altered metabolic state is 
responsible for many risk factors that are known to be implicated in 
cardio-cerebrovascular and neurodegenerative disease, such as changes 
in glucose metabolism (Mottillo et al., 2010; Frisardi et al., 2010), lipid 
dysregulation, and hemodynamic changes (Wong et al., 2017; Zhao 
et al., 2015; Sabayan et al., 2012; Zhang et al., 2014). The Gutenberg 
Health Study, which examined annoyance caused by noise of environ-
mental origin, suggested for the first time that noise annoyance is 
associated with the common arrhythmia atrial fibrillation (Hahad et al., 
2018) as a consequence of the activation of the indirect pathway by 
noise. Both pathways, direct and indirect, lead to physiological effects 
causing a stress response that activates the autonomic and endocrine 
systems. This response includes an increase in catecholamine, adreno-
corticotropic hormone (ACTH) and cortisol secretion, disruption of the 
circadian rhythm, decreased melatonin production, decreased insulin 
sensitivity and leptin levels, increases in ghrelin and appetite, upregu-
lation of inflammatory proteins such as tumor necrosis alpha (TNFα), 
interleukins (IL) (i.e. IL-1β or IL6), and C-reactive protein (CRP). Noise 
exposure also promotes an increase in the production of reactive oxygen 
species (ROS) thereby causing oxidative stress (Hahad et al., 2019; 
Daiber et al., 2019; Munzel et al., 2021). 

Animal studies on the adverse health effects of noise cannot easily 
distinguish between the direct and the indirect pathways. The emotional 
agitation of laboratory animals is difficult to quantify in a manner that 
simulates the human experience of noise exposure (Kunc and Schmidt, 

2019; Rabat, 2007), and as such, most experimental models focus on the 
direct pathways. In a recent study, we conducted audiometry mea-
surements of hearing thresholds in mice exposed to noise at mean sound 
pressure levels of 72 dB(A) and peak sound levels of 85 dB(A) for 4 days 
to 4 weeks and found no impairment of the hearing threshold allowing 
to assign all observed adverse cardiovascular and cerebral health effects 
in these mice to the indirect effects of noise (Frenis et al., 2021). 

1.2. Activation of autonomic and endocrine systems: Neurohormonal 
response 

There is variance in the noise-reaction models in terms of sound 
pressure level, origin of noise, and experimental setup but all these 
models converge in causing stress reactions (Fig. 1) (Hahad et al., 2019; 
Turner et al., 2005; Westman and Walters, 1981). Stress reactions pro-
duce risk factors over time including vascular dysfunction that initiates 
the development of cardiovascular and neuronal diseases. Vascular tone, 
circulation of blood cells, inflammation, and platelet activity are some of 
the most essential functions regulated by the endothelium (Gonzalez 
and Selwyn, 2003; Lerman and Burnett, 1992). However, stress states in 
cardiovascular disease are characterized by impaired NO signaling and 
are associated with an increase in circulating stress hormones, cyto-
kines, vasoconstrictors such as angiotensin II, and circulating or infil-
trating immune cells (Gliozzi et al., 2019; Balligand et al., 2009), as well 
as, other free radicals such as superoxide, which ultimately leads to 
endothelial dysfunction. Noise-induced stress activates the sympathetic 
nervous system, hypothalamic–pituitaryadrenal axis, and endocrine 
systems to produce stress responses that, when sustained, result in in-
creases in blood pressure, cardiac output, blood viscosity, glucose and 
blood coagulation, and changes in the lipid profile, all of which are risk 
factors for the development of CVD (Daiber et al., 2019; Munzel et al., 
2018; Said and El-Gohary, 2016; Munzel et al., 2014). The initiating 
factor is the perception of noise, which causes either the hypothal-
amus–pituitaryadrenal (HPA) or by the activation of the sympathetic 
nervous system (SNS) with subsequent catecholamine formation, for 
instance adrenaline (A) and noradrenaline (NA). The hypothalamus 
causes to release corticotrophin-releasing hormone (CRH), which is the 
main element that drives the body’s response to stress, the signal to the 
pituitary gland to secrete ACTH into the blood, which then stimulates 
the production of glucocorticoid hormones (cortisol in humans and 
corticosterone in mice) by the adrenal glands (Fig. 1). The adrenal 
glands are also responsible for the production of catecholamines 
(adrenaline and noradrenaline) (Jedema and Grace, 2004), these hor-
mones are then responsible for activating secondary systems, such as the 
renin-angiotensin-aldosterone system (RAAS), which will increase 
oxidative stress and inflammation (Campos-Rodriguez et al., 2013). 
Both RAAS and the neurotransmitters have activating effects on immune 
cells that precipitate the production of ROS and inflammatory cytokines 
(Schlaich et al., 2005; Xiao et al., 2015; Daiber et al., 2020). Angiotensin 
II (and subsequently cortisol) then activates endothelial NADPH oxidase 
(Nox) via protein kinase C causing oxidative stress, which will directly 
scavenge nitric oxide (•NO) leading to the formation of the highly 
reactive intermediate, peroxynitrite (ONOO–) and subsequently to tet-
rahydrobiopterin (BH4 – cofactor of eNOS) oxidation to the trihy-
drobiopterin (BH3) radical and to increased endothelial nitric oxide 
synthase (eNOS) S-glutathionylation (Daiber et al., 2020; Li and Shah, 
2003; Frenis et al., 2021), both reactions being associated with eNOS 
uncoupling (Daiber et al., 2014; Daiber et al., 2019). Since •NO is one of 
the most important signalling molecules for vasorelaxation, the uncou-
pling of the enzyme that produces it, eNOS, results in the direct 
impairment of the ability of the endothelium to regulate vascular tone. 

The production of excess ROS can activate important signalling 
pathways, including phosphoinositide 3-kinases / Protein kinase B 
(PI3K/Akt) signalling, the forkhead box (FOXO) transcription factors, 
transforming growth factor beta 1 (TGF-b1) and nuclear factor kappa- 
light-chain-enhancer of activated B cells (NF-kB) signalling as well as 

Table 1 
Examples of noise levels in terms of exposure to common 
sources.  

Examples Loudness 

Threshold of hearing 0 dB 
Rustling leaves 10 dB 
Ticking of a watch 20 dB 
Whisper 30 dB 
Quiet living room 40 dB 
Rain 50 dB 
Conversation 60 dB 
Passenger car 70 dB 
Telephone ringing 80 dB 
Truck 90 dB 
Jackhammer 100 dB 
Rock band 110 dB 
Aircraft on take off 120 dB 
Threshold of pain 130 dB 

Examples were obtained from (Munzel et al., 2017). dB: 
Decibel. 
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the endothelin-1 (ET-1 – potent vasoconstrictor peptide) system (Wilcox 
et al., 2019), increasing the circulating levels of interleukin 6 (IL-6 – 
proinflammatory cytokine) and the expression of vascular adhesion 
molecules (Munzel et al., 2018; Munzel et al., 2017). ROS production by 
infiltrating immune cells (neutrophils, natural killer cells, and mono-
cytes/macrophages) promotes oxidative damage, especially impairment 
of endothelial function (Daiber et al., 2017; Daiber and Chlopicki, 2020) 
as mentioned via eNOS uncoupling. 

Endothelial •NO production is further reduced by glucocorticoids 
like cortisol, leading to impaired vasodilation and increased blood 
pressure (Munzel et al., 2017; Zielinska et al., 2016). Additionally, 
overproduction of catecholamines (NA, A) and ET-1 increases vaso-
constriction and adversely affects vascular function, which is further 
enhanced by glucocorticoids. It was shown that increased blood glucose 
levels, insulin resistance (Morakinyo et al., 2019), obesity (Mavanji 
et al., 2013), hypertension (Steven et al., 2020), and atherosclerosis in 
noise-exposed mice were worsened by oxidative stress, vascular 
dysfunction, autonomic imbalance, inflammation, and metabolic ab-
normalities (Munzel et al., 2021; Munzel et al., 2018). Upon chronic 
activation of stress response pathways, cardiovascular risk factors can 
emerge or be exacerbated and lead to cardiovascular or neuronal dis-
eases (explained in detail in Fig. 1) (Munzel et al., 2021; Sorensen and 
Pershagen, 2019). 

Translational studies have further supported the hypothesis that 
stress responses resulting from noise exposure lead to the induction of 
inflammatory processes. This adverse effect was also observed to be 
attenuated by co-treatment with anti-inflammatory and antioxidant 
substances, supporting a fundamental mechanistical role of the redox 
changes and inflammatory responses caused by noise exposure (Baldwin 
and Bell, 2007). Noise exposure is associated with altered DNA 
methylation (Guo et al., 2017) and telomere length (Meillere et al., 
2015), both “biomarkers” well-known to be sensitive to inflammation 
and oxidative stress and being capable to predict future cardiovascular 
disease and events in humans (Agha et al., 2019; Haycock et al., 2014). 
Previous studies with aircraft-noise exposed mice demonstrated that 
noise causes an increase in stress hormones, systolic and diastolic blood 
pressure associated with oxidative stress in the vasculature and brain. 
Likewise, the aortic endothelium was more infiltrated with inflamma-
tory cells suggesting the increased oxidative stress was in part origi-
nating from phagocytic phagocytic NADPH oxidase (Nox2) (Kroller- 
Schon et al., 2018; Munzel et al., 2017). Additionally, in our recent study 
it was demonstrated a link between a pro-inflammatory phenotype of 
plasma, activation of circulating leukocytes, and microvascular 
dysfunction in mice exposed to aircraft noise (Eckrich et al., 2021). 

Specifically in the brain, a neuroinflammatory phenotype was 
demonstrated resulting from acute noise exposure that was character-
ized by astrocyte and microglia activation, enhanced expression of in-
flammatory markers, and increases in oxidative stress (Frenis et al., 
2021), which were worsened by the presence of pre-existing hyperten-
sion and only observed upon noise exposure during the sleep phase of 
the mice (Kroller-Schon et al., 2018; Steven et al., 2020). These dele-
terious effects were almost completely prevented in Nox2 knockout 
mice, confirming a crucial role for these cells in the detrimental 
phenotype resulting from acute aircraft noise exposure (Kroller-Schon 
et al., 2018; Frenis et al., 2021). 

2. Mechanistic insight on cerebral consequences of noise 
exposure and implications for neuropsychiatric outcomes 

2.1. Vulnerability of the brain morphology to noise stress 

There is increasing evidence that noise impairs higher and limbic 
structures (Arnsten and Goldman-Rakic, 1998; McEwen et al., 1968) via 
stress effects causing neuroanatomical changes in experimental animals. 
For instance, in 2002 it was demonstrated that impulse noise (198 or 
202 dB) causes brain damage in female rats, upregulating the expression 

of proto-oncogenes c-Fos, c-Myc, and β-APP (Saljo et al., 2002). The first 
3 weeks post-exposure were followed by focal ischemia in the rat 
anterior cortex, hippocampus, thalamus, and cerebellum. Additionally, 
some studies have shown that noise stress could result in impaired 
cognition and impairment of spatial memory. For instance, Chen et al. 
showed that noise exposure could cause structural and functional 
problems in the auditory cortex and hippocampus (Saljo et al., 2002). 
They used a murine noise exposure model wherein mice were exposed 
for 1 or 3 weeks to moderate noise (80 dB SPL, 2 h/day). They suggested 
that although the hippocampus (non-auditory system) and auditory 
cortex (auditory systems) were both affected by moderate noise expo-
sure, the hippocampus may have been more vulnerable to environ-
mental noise than the auditory cortex. Interestingly, it was shown that 
light/dark cycles and sex play a role in the impact of chronic traffic noise 
exposure on mouse brain structure–function, and they demonstrated the 
adverse effects of the chronic noise stress on behavior and brain struc-
ture such as reduced cortical thickness and shrunken brain volume 
(Jafari et al., 2018). Some studies associated the excess of dopamine 
levels in the brain with noise stress (Samson et al., 2005; Sundareswaran 
et al., 2017; Wankhar et al., 2017). These studies demonstrated that the 
excess of dopamine in the cytosol could be metabolized by monoamine 
oxidase to produce hydrogen peroxide thereby increasing ROS, which in 
turn initiates a cascade of ROS-mediated changes in the morphology of 
cerebellar Purkinje cells (Wankhar et al., 2017). Moreover, chronic 
stress has been associated with macroscopic changes in certain brain 
surfaces, leading to physical changes in neural networks (McEwen et al., 
1968). According to some studies, the effects of stress in the prefrontal 
cortex (PFC) and the limbic system were characterized by a decrease in 
the volume of various structures and an alteration in neuronal plasticity 
through dendritic atrophy and reduced spinal density, suggesting that 
depressive disorders, commonly associated with chronic stress in 
humans, can also be caused by noise (Arnsten and Goldman-Rakic, 
1998; Wright et al., 2014). Atrophy of the basal ganglia and a signifi-
cant decrease of gray matter in certain areas of the prefrontal cortex 
have been observed in individuals affected by long-term stress (Lucassen 
et al., 2014; Manukyan, 2022). 

2.2. The cognitive and emotional response to the noise stimulus: 
Preclinical outcomes in animals 

Several studies have demonstrated that noise stress impairs cogni-
tion, motor coordination, changes of feeding behavior, fear, and anxiety 
due to the adverse effect of this stress that include metabolic and 
anatomical changes in neurons, reduced dendritic count, impaired 
memory, cognition, and locomotor activity (summarized in Fig. 2 and 
Table 2) (Jafari et al., 2018; Zhang et al., 2021). According to the 
Centers for Disease Control and Prevention, “a healthy brain is one that 
can perform all the mental processes that are collectively known as cognition, 
including the ability to learn new things, intuition, judgment, language and 
remembering.” (Fink, 2017). Currently, impaired cognition is associated 
with a significant socioeconomic burden, compounding the public 
health imperative (Babulal et al., 2019). Many animal models showed 
that they could develop impaired cognition with noise exposure (Jafari 
et al., 2020). Moreover, repeated noise stress exposure has also been 
reported to alter stress hormones (Akyazi and Eraslan, 2014), produces 
metabolic and anatomical changes in neurons, reduced dendritic count, 
impaired memory, and cognition (Manikandan et al., 2006; Cui et al., 
2009). For instance, Manikandan et al. demonstrated that long-term 
noise induced oxidative stress, increased acetylcholinesterase activity, 
reduced dendritic count in hippocampus, medial prefrontal cortex re-
gions, and elevated plasma corticosterone level, and might have caused 
the impairment of spatial memory in rats (Manikandan et al., 2006). 
Additionally, the effects of varying degrees of stress on several motor 
and sensory tasks that are frequently used to assess functional recovery 
were studied after lesion-induced impairments in adult rats (Metz et al., 
2001). The noise effect caused alterations in neurotransmitter release 
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and induced changes in long-term potential as well as synaptic plas-
ticity, leading to learning and memory impairment. In line with these 
findings, evidence also suggests that stress adversely affects motor 
function in humans (Maki and McIlroy, 1996). Furthermore, some 
translational studies have shown that chronic noise-induced oxidative 
stress caused the impairment of memory and reduction of the dendritic 
processes in the hippocampus (Cui et al., 2015; Jafari et al., 2019). 
Unfortunately, the neural mechanisms underlying the impacts of noise 
on non-auditory function are still unclear, particularly when it comes to 
learning and memory. However, recent animal studies have shown that 
exposure to loud noise, which causes temporary or permanent changes 
in hearing threshold, disrupts hippocampus histology, reduces neuro-
genesis in the hippocampus, and impairs hippocampus function associ-
ating with learning and memory abilities (Cui et al., 2009; Kraus et al., 
2010; Uran et al., 2012; Barzegar et al., 2015; Hayes et al., 2019). On the 
other hand, it is known that the central nervous system controls motor 
coordination by the activation of the motor cortex, the cerebellum, and 
basal ganglia (Arjunan and Rajan, 2020). The activation of the basal 
ganglia promotes the secretion of dopamine as a major neurotransmitter 
involved in movement and locomotion. Moreover, noise increases 
dopamine that facilitates free radical damage in the cerebellum leading 
to impaired motor coordination (Wankhar et al., 2017). With respect to 
the permeability of blood–brain barrier (BBB), there is no direct evi-
dence indicating that noise pollution increases its permeability, while 
substantial peripheral immune infiltration in the brains of noise exposed 
mice was recently observed (Frenis et al., 2021). 

There is also evidence that noise stress impairs eating and lactation 
behavior (Jafari et al., 2017; Epel et al., 2001). Nevertheless, some 
studies determined that acute stress activates sympathetic arousal and 
glucocorticoids release supports behavioral, automatic, and endocrino-
logical changes that promote energy mobilization such as increased 
cardiac output, blood pressure, gluconeogenesis, triglyceride levels, and 
redirection of blood flow to fuel the muscles, heart, and brain (Yau and 
Potenza, 2013). In addition, in both humans (Epel et al., 2001; Oliver 

et al., 2000; Zellner et al., 2006) and animals (Dallman et al., 2003; la 
Fleur et al., 2005; Pecoraro et al., 2004), a shift toward choosing more 
pleasurable and palatable foods is observed irrespective of caloric intake 
changes associated with stress. Taken together, these findings suggest 
that stress may promote irregular eating patterns and strengthen net-
works towards hedonic overeating; these effects may be exacerbated in 
overweight and obese individuals due to chronic exposures to stress that 
dysregulate the hypothalamic–pituitaryadrenal (HPA) axis, affecting 
energy metabolism and feeding behavior (Yau and Potenza, 2013). 

Finally, research has demonstrated that noise increases anxiety-like 
behavior via downstream targets that mediate many of the behavioral, 
autonomic, and electrophysiological consequences (Lan et al., 2020; 
Standing and Stace, 1980; Edsell, 1976). Moreover, high levels of glu-
cocorticoids increases the excitation of neurons in the amygdala by 
decreasing the gamma-aminobutyric acid, or GABA, level and increasing 
the cytosolic calcium, which triggers cytoarchitectural changes in 
basolateral amygdala neurons (Mora et al., 2012). 

Studies have also reported that chronic exposure to noise de-
teriorates brain function and may lead to neurodegenerative disease. 
Exposure to continuous noise of 85–90 dB increased the oxidative stress 
and decreased the antioxidant level in various regions of the brain. Also, 
stress activates the HPA and secretion of glucocorticoids (corticosterone 
in rats and cortisol in humans) in adrenal glands, which crosses the 
blood–brain barrier and interacts with the neurons and neuroglia cells 
that alters the neuroanatomical and neurophysiological functions in 
brain (Mora et al., 2012; McEwen, 2007; McEwen, 2010). Then, the 
increase of acetylcholine and glutamate levels promotes neurochemical 
changes and morphological changes including reduced dendrite density 
and branches. Additionally, noise stress results in the damage to the 
hippocampus, which is involved in cognition and is involved in the 
conscious or voluntary memory (Belanoff et al., 2001). 

Fig. 2. View of the brain–body interaction in response to noise stress. Stressful stimuli modify the release of different neurotransmitters on the limbic surfaces of 
the brain (prefrontal cortex, hippocampus, amygdala, and nucleus accumbens), leading to the promotion and modulation of behavioral processes to deal with the 
stressor. Hypothalamic activation triggers the release of different hormones and peptides (dopamine, noradrenaline, acetylcholine, or glutamate) from the body that 
cross the blood–brain barrier (BBB) to feed back into the brain. Adapted from Francisco Mora et al. (Mora et al., 2012). Created with BioRender.com. 
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2.3. Neurodegenerative implications of noise exposure 

Neurodegenerative diseases like Alzheimer’s disease are caused by 
dysregulation of neuronal signaling and neuron death arising from the 
accumulation of insoluble plaques in the CNS (Dugger and Dickson, 
2017). Alzheimer’s disease, and more broadly dementia, is known to be 
exacerbated by chronic inflammation and oxidative stress (Paul et al., 
2019). Since noise was observed to induce both neuroinflammation and 
oxidative stress (Kroller-Schon et al., 2018), it is possible that excessive 
exposure to noise could accelerate the progression of neurodegenerative 
diseases. ROS, a hallmark feature in noise exposure models, is known to 
activate protein kinases such as PKC and PKA (Cosentino-Gomes et al., 
2012), which can then hyperphosphorylate tau, one of the proteins 
responsible for the accumulation of plaques, and destabilize microtu-
bules leading to progression of Alzheimer’s disease (Alonso et al., 2018). 
Amyloid precursor protein (APP), the protein from which amyloid beta 
(Aβ) is cleaved, is a transmembrane protein with a cholesterol binding 
domain, and is sensitive to membrane fluidity and lipid composition 
(Hicks et al., 2012). Neuronal ROS can easily oxidize lipids and disturb 
the APP, leading to further progression of Alzheimer’s disease (Kao 
et al., 2020). Because of the overlap in key mechanisms, it is tempting to 
make indirect associations that oxidative stress is caused by noise which 

could then potentially expedite the onset and progression of Alzheimer’s 
disease. 

Though only a few studies provide direct links between noise expo-
sure and neurodegenerative diseases, these links have been explored by 
studies conducted in rodent models (Jafari et al., 2020). In one study, 
exposure of Wistar rats to 4 weeks of white noise showed that noise 
caused accumulation of Aβ40 and Aβ42 in the hippocampus, which per-
sisted for up to two weeks after the noise exposure has ended. APP and 
its cleavage enzymes, β- and γ-secretase were also found to be elevated, 
together with TNF-α, glial fibrillary acidic protein and ionized calcium- 
binding adapter molecule 1, all pointing to a pro-Alzheimer’s phenotype 
(Cui et al., 2015). Another study conducted in rats found that 30 days of 
noise exposure caused phosphorylation of the tau protein in the hip-
pocampus (Gai et al., 2017), which was accompanied by an increase in 
expression of corticotropin-releasing factor (CRF), indicating that tau 
phosphorylation could be the result of a stress response. Interestingly, 
the phosphorylated tau protein and CRF were colocalized in the hip-
pocampus. The upregulation of the CRF receptor 1, together with the 
CRF, points to the proinflammatory state of the hippocampus. A similar 
increase in phosphorylation of the tau protein in the hippocampus was 
observed in another study where rats were exposed to impulse noise of 
high sound pressure (Cui et al., 2012). In both studies (Gai et al., 2017) 

Table 2 
Overview of selected animal studies on emotional response to the noise stimulus: preclinical outcomes.  

Study Year Species Exposure Major outcome Ref. 

Morvai et al. 1994 Rat 95 dBA, industrial noise, 6 h, 3w Noise and alcohol modify the α-adrenergic effect of noradrenaline. (Morvai et al., 
1994) 

Singewald 
et al. 

2000 Rat 95 dB, unknown type, 3  minutes Noise stress resulted in exaggerated glutaminergic responses in the amygdala 
of SHR versus Wistar-Kyoto rats. 

(Singewald et al., 
2000) 

Saljo et al. 2002 Rat Impulse noise of 198 or 202 dB Impulse noise causes brain damage, the expression of c-Fos and c-Myc 
increased at 2 h after exposure in neurons of the cerebral cortex. 

(Saljo et al., 
2002) 

Lenzi et al. 2003 Rat 100 dBA, white noise, 12 h Increased catecholamine content in myocardium, DNA damage in 
cardiomyocytes, mitochondrial membrane swelling in right atrium. 

(Lenzi et al., 
2003) 

Frenzilli et al. 2004 Rat 100 dBA, white noise, 12 h DNA damage in the adrenal gland, possible redox involvement. (Frenzilli et al., 
2004) 

Samson et al. 2005 Rat Broadband white noise, 100 dB, 4 h/ 
day, in acute: 1 day, subacute: 15d and 
chronic stress: 30d 

The noise induced alterations in free radicals may be assumed to serve as a 
linkage between the environmental noise and the manifestation of 
multifactorial diseases. 

(Samson et al., 
2005) 

Manikandan 
et al. 

2006 Rat 100 dBA/4h per d for 30d Elevated plasma corticosterone level which develops in long-term noise-stress 
exposed rats, might have caused the impairment of spatial memory. 

(Manikandan 
et al., 2006) 

Cui et al. 2009 Rat 100 dB white noise, 4 h/d Chronic noise exposure might have caused the impairment of spatial learning 
and memory. 

(Cui et al., 2009) 

Gannouni 
et al. 

2013 Rat 70 dB, 80 dB, unknown type, 6 h, 90d Increased corticosterone levels, affected various parameters of the endocrine 
glands and cardiac function. Markers of oxidative stress (catalase, superoxide 
dismutase, and lipid peroxidation) were increased. 

(Gannouni et al., 
2013) 

Akyazi et al. 2014 Rat White noise stress in a period of 15d White noise exposure caused a stress response characterized by an elevation of 
cortisol level. 

(Akyazi and 
Eraslan, 2014) 

Gannouni 
et al. 

2014 Rat 70 dBA, unknown type, 6 h/d, 3/5 
months 

Structural alterations within the adrenal gland consistent with chronic stress. 
Signs of necrosis and inflammation in myocardium. 

(Gannouni et al., 
2014) 

Cui et al. 2015 Rat 100 dB (4 h per d for 28d, from 8:00 to 
12:00) 

Lifelong environmental noise exposure may have cumulative effects on the 
onset and development of Alzheimer’s disease. 

(Cui et al., 2015) 

Said et al. 2016 Rat 80–100 dB, chronic and intermittent, 
unknown type, 8 h, 20d 

Increases in plasma levels of corticosterone, adrenaline, noradrenaline, 
endothelin-1, nitric oxide and malondialdehyde. Decreases in superoxide 
dismutase. 

(Said and El- 
Gohary, 2016) 

Konkle et al. 2017 Rat 87.3 dBA, unknown type, 15 minutes 
-1 h, 21d 

Plasma ACTH, adrenal gland weight, IL-6, IL-1b levels were unchanged 
following noise exposure. Increases in TNFα and CRP were seen. 

(Konkle et al., 
2017) 

Münzel et al. 2017 Mouse 72cdBA, intermittent aircraft, 4d Endothelial dysfunction, blood pressure, and redox balance were disturbed 
following noise exposure 

(Munzel et al., 
2017) 

Wankhar et al. 2017 Rat Above 100 dB Increased reactive free radical species can initiate lipid peroxidation mediated 
changes in the cerebellar Purkinje cells, which is responsible for initiating 
inhibitory motor response. 

(Wankhar et al., 
2017) 

Jafari et al. 2017 Mouse 3000 Hz tone Auditory stress caused an increase in anxiety-like behavior, reduced time spent 
exploring new object/environment, and reduced balance when compared to 
the physical stress and control groups. 

(Jafari et al., 
2017) 

Jafari et al. 2018 Mouse Traffic noise on either the light-cycle 
or dark-cycle for 30d 

Traffic noise exposure caused the hypothalamic–pituitaryadrenal axis 
hyperactivity, anxiety-like behavior, impairments in learning and memory, 
dysfunction in balance and motor coordination. 

(Jafari et al., 
2018) 

Zhang et al. 2021 Rat ~65 dB Moderate-level noise with little effect on stress status can substantially impair 
hippocampus-related learning and memory. 

(Zhang et al., 
2021) 

dB: Decibel, h: hours, w: weeks, d: days, SHR: spontaneously hypertensive rat, ACTH: adrenocorticotropic hormone, IL: interleukin, TNFα: tumor necrosis alpha, CRP: 
C-reactive protein. 
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and (Cui et al., 2012), tau was hyperphosphorylated, which blocks the 
binding of microtubules, rather than facilitating this binding (Hashi-
guchi and Hashiguchi, 2013). A study in a mouse model of Alzheimer’s 
disease demonstrated that exposure to gestational noise stress induces 
earlier and more severe symptoms in the offspring (Jafari et al., 2019). 
The study showed that the hypothalamic–pituitaryadrenal axis was 
more activated in the noise-exposed offspring group and that accumu-
lation of the Aβ had an earlier onset with heightened progression. Other 
groups have also observed impact of the gestation period noise exposure 
on the development of Alzheimer’s-like pathology and dementia (Jafari 
et al., 2018; Jafari et al., 2017; Jafari et al., 2019). In these studies, it was 
noticed that Aβ is deposited in the olfactory region of the brain, which 
was also supported by other animal studies where stress was responsible 
for a lack of smell memory (Belnoue et al., 2016). From the mechanistic 
point of view, there remain many unanswered questions pertaining to 
the connection between noise and neurodegenerative disease, but it is 
clear that the stress response, followed by neuroinflammation and 
oxidative stress, is playing a decisive role. 

3. Recent epidemiological/observational evidence on the 
association of noise exposure with neuropsychiatric outcomes 

3.1. Stroke 

In a cohort of 20,012 subjects from Stockholm County in Sweden, 
Pyko et al. examined the influence of exposure to road traffic, railway, 
and aircraft noise on incident risk of ischemic heart disease and stroke 
(Pyko et al., 2019) (Fig. 3 and Table 3 summarize all recent epidemio-
logical/observational evidence). A pronounced suggestive risk of stroke 
was observed in subjects exposed to all three traffic noise sources 
(≥45 dB Lden; hazard ratio (HR) 1.42, 95% confidence interval (CI) 
0.87–2.32). In a large case-control study from Germany 
(N = 1,026,670), an increased risk of stroke was found in response to 
aircraft noise (odds ratio (OR) 1.07, 95% CI 1.02–1.13 for subjects 

exposed to < 40 dB of 24-hour continuous aircraft noise (LpAeq,24h) 
and ≥ 6 events of maximum nightly sound pressure levels ≥ 50 dB) 
(Seidler et al., 2018). In addition, road traffic and railway noise exposure 
were found to be positively related with risk of stroke (OR 1.017, 95% CI 
1.003–1.032 and OR 1.018, 95% CI 1.001–1.033, respectively). Herein, 
the authors discriminated between ischemic and hemorrhagic stroke 
demonstrating higher OR for the latter for aircraft and railway noise. 
The relationship between noise from wind turbines and risk of incident 
myocardial infarction and stroke was the subject of a nationwide Danish 
cohort study from Poulsen et al., which is of special importance, since 
wind turbine noise has been reported as more annoying than traffic 
noise at similar levels (Poulsen et al., 2019). The authors have revealed 
significant evidence for a relationship between mean 1- and 5-year 
nighttime outdoor wind turbine noise exposure groups and risk of 
stroke (e.g. incidence rate ratio (IRR) 1.10, 95% CI 1.03–1.17 for 30–36 
vs. < 24 dB(A)). In 23,912 Danish nurses, weaker evidence for a rela-
tionship between wind turbine noise and stroke incidence was found 
(Brauner et al., 2019). In a further nationwide Danish study, a 4% (IRR 
1.04, 95% CI 1.03–1.05 per 10 dB increase at the most exposed façade) 
higher risk of incident stroke was found in response to road traffic noise, 
while no association was found for railway noise, possibly due to the 
circumstance that railway noise is generally perceived as less annoying 
than road traffic noise (Sorensen et al., 2021). Interestingly, not only 
stroke risk but also severity has been associated with residential noise 
exposure as revealed in 2,761 patients hospitalized with acute ischemic 
stroke in Barcelona (Vivanco-Hidalgo et al., 2019). While higher resi-
dential surrounding greenspace was associated with decreased risk of 
severe stroke, increased residential noise exposure (Lden) was associated 
with a pronounced risk of severe stroke (OR 1.30, 95% CI 1.02–1.65). 
The influence of exposure to road traffic noise and stroke incidence was 
examined in 25,660 Danish nurses indicating no substantial effect after 
adjustment for PM2.5 or NO2 (Cole-Hunter et al., 2021). In contrast, 
stronger evidence was found for all-cause (HR 1.06, 95% CI 1.01–1.11 
and HR 1.09, 95% CI 1.03–1.15 per 10 dB increase of 5-year and 23-year 

Fig. 3. Hazard ratio/odds ratio/ relative risk (HR/OR/RR) or adverse effects (percentages) for aircraft, road traffic, or railway noise associated health risks or 
complications based on selected representative studies. All alphabetical cross references in this figure (a, b, c…) are linked to literature references as follows: Mental 
illness reports: a (Dzhambov and Lercher, 2019), b (Hegewald et al., 2020), c (Seidler et al., 2017), d (Eze et al., 2020), and e (Min and Min, 2018). Stroke source 
reports: f (Seidler et al., 2018), g (Roswall et al., 2021); and m (Poulsen et al., 2019). Neurodevelopmental disorders reports: j (Schubert et al., 2019), k (Clark et al., 
2021). Dementia and cognitive decline reports: h (Weuve et al., 2021), i(Cole-Hunter et al., 2022). Note of caution: The presented values are based on selected 
representative studies with different quality levels of evidence highlighting the need for more research. Created with BioRender.com. 
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mean Lden, respectively) and stroke mortality (HR 1.10, 95% CI 
0.91–1.31 for 5-year mean Lden) within the same cohort (Cole-Hunter 
et al., 2022). The substantial role of traffic noise exposure in the risk of 
increased stroke mortality was also confirmed in two nationwide studies 
from Switzerland (Heritier et al., 2017; Vienneau et al., 2022), whereas 
a study from Brazil found no substantial association between aircraft 
noise exposure and stroke mortality (Roca-Barcelo et al., 2021). The 
effect of occupational noise exposure on stroke risk was examined in a 
systematic review and meta-analysis from Teixeira et al. (Teixeira et al., 
2021). The body of evidence for acquiring stroke (relative risk (RR) 
1.11, 95% CI 0.82–1.65, two studies, 170,000 participants) and dying 
from stroke (RR 1.02, 95% CI 0.93–1.12, three studies, 195,539 par-
ticipants) was judged as “inadequate evidence of harmfulness”. Like-
wise, in 5,753 Swedish men, occupational noise exposure was not 
accompanied by an increased risk of stroke (Eriksson et al., 2018). 
Conversely, in 194,501 Swedish workers, moderate and high 

occupational noise exposure was associated with increased stroke 
mortality (RR 1.15 and 1.19, respectively) with no evidence for an 
interaction effect associated with living and working in cold conditions 
(Pettersson et al., 2020). Further meta-analytic evidence comes from a 
study from Weihofen et al. evaluating the relationship between aircraft 
noise exposure and the incidence of stroke (Weihofen et al., 2019). The 
meta-analysis of seven studies revealed a RR of 1.013 (95% CI 
0.998–1.028 per 10 dB increase in Lden). Analyzing data from nine 
Scandinavian cohorts (seven Swedish, two Danish resulting in 
N = 135,951 participants) revealed road traffic (HR 1.06, 95% CI 
1.03–1.08 per 10 dB increase) and aircraft noise exposure (HR 1.12, 95% 
CI 0.99–1.27 for 40–50 vs. ≤ 40 dB) to be associated with incident stroke 
risk, whereas no association was found for railway noise (Roswall et al., 
2021). In the Northern Manhattan Study, subjects living < 100 m from a 
roadway, as a surrogate for higher noise exposure, had a 42% (HR 1.42, 
95% CI 1.01–2.02) higher rate of ischemic stroke versus those 

Table 3 
Tabular overview of selected human studies on the association between aircraft, road traffic, or railway noise and neuropsychiatric outcomes.  

Study Population/cohort/design Risk associated with Major outcome Ref. 

Stroke 
(Seidler et al., 

2018) 
All people aged ≥ 40 years living around the Frankfurt 
airport (N = 1,026,670) between 2005 and 2010 

All three traffic noise 
sources (road traffic, 
railway, and aircraft) 

Stroke risk was statistically significantly increased by 
7% (were exposed to < 40 dB of 24-h continuous 
aircraft noise). For road and railway traffic noise, there 
was a positive linear exposure-risk relation: Per 10 dB 
the stroke risk increased by 1.7%, and for road traffic 
noise by 1.8% 

(Seidler et al., 
2018) 

(Roswall et al., 
2021) 

Scandinavian cohorts (seven Swedish, two Danish), 
totaling 135,951 participants 

All three traffic noise 
sources 

Road traffic noise (Lden) was associated with risk of 
stroke, with a HR of 1.06 per 10 dB higher 5-y mean 
time-weighted exposure. Stroke was associated with 
moderate levels of 5-y aircraft noise exposure (40–50 
vs. ≤ 40 dB) with a HR of 1.12. Railway noise was not 
associated with stroke. 

(Roswall et al., 
2021) 

Mental illness 
Dzhambov and 

Lercher, 
2019 

For depression (N = 1,201,168) and for anxiety 
(N = 372,079) 

Road traffic 4% higher odds of depression and 12% of anxiety 
associated with a 10 dB(A) increase in Lden. 

(Dzhambov and 
Lercher, 2019) 

(Hegewald 
et al., 2020) 

31 studies (26 on depression and/or anxiety disorders, 
5 on dementia) 

All three traffic noise 
sources 

Depression risk increased significantly by 12% per 
10 dB Lden by aircraft noise. The meta-analyses of road 
and railway traffic noise indicated 2–3% (not 
statistically significant) increases. 

(Hegewald 
et al., 2020) 

(Seidler et al., 
2017) 

Individuals aged ≥ 40 years that were living in the 
region of Frankfurt international airport between 2006 
and 2010 

All three traffic noise 
sources 

For aircraft noise, the risk estimates reached a 
maximum OR of 1.23 at 50–55 dB. For road traffic 
noise, a linear exposure-risk relationship was found 
with an OR of 1.17. For railway noise, risk estimates 
peaked at 60–65 dB with a OR of 1.15. 

(Seidler et al., 
2017) 

Eze et al., 2020 4,581 SAPALDIA participants without depression in the 
year 2001/2002 

All three traffic noise 
sources 

A linear exposure-risk relationship was observed for 
road traffic noise OR 1.17 for LpAeq,24h ≥ 70 dB. For 
aircraft noise, the highest risk estimate was observed for 
exposures at 50–55 dB with a OR of 1.23 and for railway 
noise at 60–65 dB with a OR 1.15. The combination of 
all three exposures (above 50 dB) yielded the highest 
risk estimate with an OR of 1.42. 

(Eze et al., 
2020) 

Min and Min, 
2018 

A total of 155,492 adults constituted the study sample: 
younger adults (20–54 years, N = 124,994), or older 
adults (≥55 years, N = 30,498), and adults with mood 
and anxiety disorders (N = 34,615) 

Nighttime noise 315 (0.2%) died of suicide. With interquartile range 
increases in nighttime noise, the HR for suicide death 
was significantly increased: 1.32 for younger adults, 
1.43 for older adults, and 1.55 for adults with mental 
illness. 

(Min and Min, 
2018) 

Dementia and cognitive decline 
(Weuve et al., 

2021) 
Participants of the Chicago Health and Aging Project 
(≥65 years) underwent triennial cognitive assessments 
(N = 5,227 participants) 

Residential noise 
exposure 

An increment of 10 dB in noise corresponded to 36% 
and 29% higher odds of prevalent mild cognitive 
impairment (OR 1.36) and Alzheimer’s disease (OR 
1.29). 

(Weuve et al., 
2021) 

(Cole-Hunter 
et al., 2022) 

22,858 females from the Danish Nurse Cohort Road traffic Increased risk of death from dementia in response to 
road traffic noise (HR 1.12). 

(Cole-Hunter 
et al., 2022) 

Neurodevelopmental disorders 
(Schubert 

et al., 2019) 
14 articles from 10 studies examining the effect of 
transportation noise exposure on the mental health of 
children 

Road traffic Hyperactivity/inattention and total difficulties was 
significantly increased by 11% (OR 1.11). 

(Schubert et al., 
2019) 

(Clark et al., 
2021) 

Data from three methodologically similar studies 
carried out in 106 schools near London Heathrow, 
Amsterdam Schiphol, and Madrid Barajas airports 

Aircraft 1 dB increase in aircraft noise exposure at school was 
associated with a − 0.007 decreased reading score. 
Also, there was an association with a 0.017 increase in 
hyperactivity score. 

(Clark et al., 
2021) 

dB: Decibel, h: hours, Lden: day-evening-night noise levels, y: year, HR: hazard ratio, OR: odds ratio, LpAeq: equivalent continuous sound level. 
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living > 400 m away (Kulick et al., 2018). Interestingly, the findings of 
Osborne et al. indicate that traffic noise exposure associates with car-
diometabolic diseases via a neurobiological mechanism that is centered 
on stress-associated limbic (amygdalar) activity, which is also highly 
suggested in the development of noise-induced neuropsychiatric out-
comes (Osborne et al., 2020; Osborne et al., 2021; Munzel et al., 2020; 
Hahad et al., 2021). 

3.2. Mental illness 

A meta-analysis from Dzhambov and Lercher found road traffic noise 
exposure to be associated with 4% (OR 1.04, 95% CI 1.03–1.11 per 
10 dB(A) increase in Lden) higher odds of depression and 12% (OR 1.12, 
95% CI 1.04–1.30) of anxiety. However, it is important to note that most 
of the included studies were of cross-sectional nature and overall lower 
quality (Dzhambov and Lercher, 2019). Accordingly, Hegewald et al. 
revealed substantial meta-analytic evidence on the association between 
traffic noise exposure and depression and anxiety including 26 studies 
(Hegewald et al., 2020). Herein, aircraft noise exposure was found to 
increase depression risk by 12% (effect size 1.12, 95% CI 1.02–1.23 per 
10 dB increase in Lden), whereas the effect sizes obtained from road 
traffic and railway noise studies were of smaller magnitude (2–3% not 
statistically significant increases in depression risk). A meta-analysis of 
nine studies reported 9% higher odds of anxiety in response to traffic 
noise exposure (Lan et al., 2020). In the Netherlands Study of Depression 
and Anxiety (N = 2,980), high levels of traffic noise levels were asso-
ciated with the presence of depressive and anxiety disorders (Generaal 
et al., 2019). A large case-control study from Germany examined the risk 
of depression in response to aircraft, road traffic, and railway noise 
exposure (Seidler et al., 2017). A linear exposure-risk relationship was 
observed for road traffic noise (OR 1.17, 95% CI 1.10–1.25 for 
LpAeq,24h ≥ 70 dB). For aircraft noise, the highest risk estimate was 
observed for exposures at 50–55 dB (OR of 1.23, 95% CI 1.19–1.28) and 
for railway noise at 60–65 dB (OR 1.15, 95% CI 1.08–1.22). The com-
bination of all three exposures (above 50 dB) yielded the highest risk 
estimate (OR 1.42, 95% CI 1.33–1.52). Baseline data from the UK Bio-
bank study suggests symptoms of anxiety, tension, or depression and 
bipolar disorder to be positively associated with road traffic noise 
exposure, whereas a negative relationship was found in case of major 
depression (Hao et al., 2021). In the Swiss cohort study on air pollution 
and lung and heart diseases in adults (SAPALDIA), risk of incident 
depression in response to road traffic, railway, and aircraft noise expo-
sure (Lden) as well as noise annoyance was investigated (Eze et al., 
2020). Suggestive evidence was found for road traffic (RR 1.06, 95% CI 
0.93–1.22) and aircraft noise exposure (RR 1.19, 95% CI 0.93–1.53) as 
well as a robust effect of noise annoyance (RR 1.05, 95% CI 1.02–1.08). 
In a cohort of 2,398 men from the UK, road traffic noise exposure (OR 
1.82, 95% CI 1.07–3.07 for 56–60 dB(A)), noise annoyance (OR 2.47, 
95% CI 1.00–6.13), and noise sensitivity (OR 1.65, 95% CI 1.09–2.50) 
were associated with incident psychological ill-health (Stansfeld et al., 
2021). In a cohort of 140,456 women from Canada, the relationship 
between residential noise exposure during pregnancy and later depres-
sion hospitalization was evaluated (He et al., 2019). The results revealed 
strongest association for increased nighttime noise exposure (HR 1.68, 
95% CI 1.05–2.67 for 70 vs. 50 dB(A) Lnight). Importantly, short-term 
exposure to traffic noise has also been demonstrated to influence 
emergency hospital admissions due to anxiety, dementia, and suicides in 
the city of Madrid (Diaz et al., 2020). Risk of death by suicide in 
dependence of noise exposure was also subject of a Korean study 
(N = 155,492) indicating that higher nighttime noise exposure was 
associated with elevated risks of suicide death in younger adults (HR 
1.32, 95% CI 1.02–1.70), older adults (HR 1.43, 95% CI 1.01–2.02), and 
adults with mental illness (HR 1.55, 95% CI 1.10–2.19) (Min and Min, 
2018). In a further Korean study (N = 45,241), exposure to occupational 
noise and vibration increased the odds of anxiety in both males (OR 
2.25, 95% CI 1.77–2.87) and females (OR 2.17, 95% CI 1.79–2.61) (Park 

et al., 2022). Interestingly, the adverse consequences of noise exposure 
may differ between subjects with mental illnesses as data from 2,745 
subjects from the German Heinz Nixdorf recall study suggest a pro-
nounced decrease in cognitive function in response to traffic noise when 
comparing depressed vs. non-depressed subjects (Tzivian et al., 2020). A 
Finnish study (N = 7,321) also demonstrated traffic noise exposure, 
noise annoyance, and sensitivity to correlate with the use of psycho-
tropic medication including sleep medication, anxiolytic, and antide-
pressant medications (Okokon et al., 2018). In the Gutenberg Health 
Study from Germany (N = 11,905), Beutel et al. showed that noise 
annoyance due to different sources is a substantial predictor of incident 
depressive, anxiety, and sleep disturbance (Beutel et al., 2020). In a US 
sample of urban adolescents (N = 4,508), evidence for a relationship 
between living in a high-noise area and later bedtimes was found, 
whereas this relationship was weaker for mental health disorders 
(Rudolph et al., 2019). Data from the Danish Nurse Cohort study also 
suggested an association between road traffic noise exposure and mor-
tality from psychiatric disorders (HR 1.11, 0.78–1.59) (Cole-Hunter 
et al., 2022). 

3.3. Dementia and cognitive decline 

In 5,227 participants from the Chicago Health and Aging Project 
(≥65 years), residential noise exposure resulted in 36% and 29% higher 
odds of prevalent mild cognitive impairment (OR 1.36, 95% CI 
1.15–1.62 per 10 dB(A) increase) and Alzheimer’s disease (OR 1.29, 
95% CI 1.08–1.55) (Weuve et al., 2021). Additionally, lower global 
cognitive performance (perceptual speed), but not consistent cognitive 
decline, was related to noise exposure. Likewise, data from the German 
Heinz Nixdorf Recall study indicates that traffic-related noise exposure 
is associated with a lower global cognitive score and a mild cognitive 
impairment (Tzivian et al., 2016). Interestingly, stronger associations 
were observed in former and current smokers as indicated by a signifi-
cant interaction, suggesting that lifestyle risk factors may potentiate the 
negative cognitive effects of noise exposure (Tzivian et al., 2016). 
Importantly, the authors also demonstrated that air pollution and road 
traffic noise exposure may act synergistically to negatively influence 
cognitive function (Tzivian et al., 2017). In 288 elderly women from the 
German longitudinal study on the influence of air pollution on lung 
function, inflammation and aging (SALIA), road traffic noise exposure 
was shown to be associated with impaired total cognition and the 
constructional praxis domain (neuropsychological assessment battery), 
which remained stable after further adjustment for air pollution expo-
sure (Fuks et al., 2019). In the Irish Longitudinal Study on Ageing, road 
traffic noise exposure was found to negatively impact executive function 
(Mac Domhnaill et al., 2021). Also, in study of 1,612 elderly Mexican- 
American participants from Sacramento, the authors found suggestive 
evidence of traffic noise exposure to increase the risk of dementia and 
cognitive impairment (Yu et al., 2020). Interestingly, a subsequent study 
demonstrated metabolic dysfunction (hyperglycemia or low HDL- 
cholesterol) to negatively modify the influence of traffic-related air 
pollution and noise exposure on these outcomes (Yu et al., 2020). 
Linares et al. revealed the short-term association of traffic noise and risk 
of dementia-related emergency hospital admissions in Spain (Linares 
et al., 2017). In contrast, Andersson et al. found no effect of road traffic 
noise exposure, either independently or in combination with traffic- 
related air pollution, on dementia risk in 1,721 subjects (Andersson 
et al., 2018). In a larger study of 130,978 subjects from London, the 
relationship between night-time traffic noise exposure and the incidence 
of dementia became statistically insignificant in multipollutant models 
including various air pollutants (Carey et al., 2018). Likewise, while 
road proximity and air pollution were positively associated with risk of 
dementia and Parkinson’s disease in a large Canadian study 
(N ~ 678,000), noise exposure displayed no relationship with these 
outcomes (Yuchi et al., 2020). Most recently, a nationwide study from 
Denmark including almost 2 million adults aged ≥ 60 years examined 
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the influence of road traffic and railway noise exposure and incident risk 
of dementia (Cantuaria et al., 2021). The results indicated that both road 
traffic noise and railway noise exposure were associated with increased 
risk of Alzheimer’s disease, while road traffic, but not railway, noise 
exposure was also associated with an increased risk of vascular de-
mentia. Data from the Danish Nurse Cohort study may also indicate an 
increased risk of death from dementia in response to road traffic noise 
(HR 1.12, 0.90–1.38) (Cole-Hunter et al., 2022). 

3.4. Neurodevelopmental disorders 

The meta-analysis of three studies revealed increased odds of hy-
peractivity/inattention (OR 1.11, 95% CI 1.04–1.19 per 10 dB increase) 
and total difficulties (OR 1.09, 95% CI 1.02–1.16) in response to road 
traffic noise exposure in children (Schubert et al., 2019). In contrast, 
prenatal and childhood road traffic noise exposure were not associated 
with emotional, aggressive, or attention-deficit/hyperactivity disorder- 
related symptoms in children obtained from two European birth cohorts 
(Essers et al., 2022). In agreement, in 1,710 children from the TRAILS 
study in The Netherlands, road traffic noise exposure was not associated 
with symptoms of attention-deficit/hyperactivity disorder (Zijlema 
et al., 2021). However, the meta-analysis of studies investigating the 
influence of aircraft noise at school on children’s reading comprehen-
sion and psychological demonstrated that a 1 dB increase in aircraft 
noise exposure at school led to a − 0.007 (95% CI − 0.012 to − 0.001) 
decreased reading score and 4% higher odds of scoring well below or 
below average on the reading test (Clark et al., 2021). Furthermore, a 
1 dB increase in aircraft noise exposure at school was associated with a 
0.017 (95% CI 0.007–0.028) increase in hyperactivity score. Lastly, in a 
cohort of 886 adolescents in Switzerland, problem behavior in response 
to road traffic noise exposure was investigated indicating a positive 
relationship in cross-sectional analysis, whereas no association was 
found in prospective analysis (Tangermann et al., 2022). 

4. Conclusions and future considerations 

Recently the hypothesis was put forward that genetic (familial) 
predisposition for non-communicable diseases may be outcompeted by 
environmental risk factors and leading environmental health experts are 
calling for an environment-wide association study (EWAS) (Sainani, 
2016). This change of dogma is also reflected by statements such as 
“Genetics loads the gun but the environment pulls the trigger” (Bray 
et al., 2004; Olden and Wilson, 2000), also put forward by F. Collins, the 
director of the NIH. This shift was triggered by the exposome concept 
based on the study of life-long environmental exposure and its associa-
tion with biochemical changes in the organism and adverse health ef-
fects (Wild, 2005; Vrijheid, 2014). Whereas it is well accepted that 
environmental chemical pollution contributes dramatically to the global 
burden of disease and mortality (up to 9 to 12.6 million annual deaths, 
reflecting 16–20% of total mortality worldwide), as reported by the 
Lancet Commission on Pollution and Health (Landrigan et al., 2018), the 
(WHO, 2016), and the Global Burden of Disease Study (Cohen et al., 
2017; Collaborators GBDRF, 2017), the impact of mental stress and 
physical environmental factors causing mental stress, especially traffic 
noise, are far less well studied. Most societal prevention action plans and 
global estimations of environmental adverse health effects neglect the 
non-chemical environmental health risk factors mental stress, noise, 
nocturnal artificial light exposure, and climate changes (Daiber and 
Munzel, 2020). In order to address this research gap and to respond to 
the associated research need, we have summarized the current knowl-
edge on the adverse effects of noise on the brain and the relation to 
neuropsychiatric outcomes. The cardiovascular health impact by noise 
was summarized in full detail by a systematic review of the WHO 
Environmental Noise Guidelines for the European Region (Kempen 
et al., 2018). Also the impact of noise on mental health was summarized 
by a systematic review of the WHO Environmental Noise Guidelines for 

the European Region (Clark and Paunovic, 2018), supported by specific 
assessment of adverse effects of noise on annoyance (Guski et al., 2017), 
cognition (Clark and Paunovic, 2018), and sleep (Basner and McGuire, 
2018). With our present review we aimed to provide a mechanistic link 
for the observed clinical outcomes. 

In order to further increase the quality of existing clinical/epidemi-
ological data, future large-scale exposome studies addressing the health 
side effects of noise exposure on the brain and mental health are ur-
gently warranted. Considering the accumulation of environmental risk 
factors in urbanized areas (e.g. noise, light pollution, air pollution, and 
psychosocial stress), the health problems, disease burden, and number 
of deaths associated with the totality of these environmental stressors 
may even be higher than all estimations in the past (Daiber and Munzel, 
2020; Munzel and Daiber, 2018). Mitigation strategies and preventive 
measures at this level may result in substantial lowering of societal 
consequences by unhealthy environments, e.g. lowering of the global 
burden of disease and public health costs. Future animal and human 
studies on adverse health effects of noise should focus on markers of 
oxidative stress (e.g. 3-nitrotyrosine and markers of lipid peroxidation) 
and inflammation (e.g. IL-6, sVCAM-1) in order to obtain a quantitative 
image of the inflicted damage (Munzel et al., 2021; Bagheri Hosseina-
badi et al., 2019). Also, mechanistic studies would be helpful addressing 
changes of circadian rhythm (e.g. Per1, Cry1, BMAL1 and CLOCK) as 
well as regulators of circadian rhythm (e.g. FOXO-3, NRF2) (Kroller- 
Schon et al., 2018; Bayo Jimenez et al., 2021). In addition, measurement 
of stress hormones such as catecholamines, cortisol, or down-stream 
activated endocrinal systems such as the renin-angiotensin-aldosterone 
axis could provide important insights into the degree of noise- 
mediated stress responses and activation of detrimental hormonal 
pathways (Munzel et al., 2021; Daiber et al., 2020). Human studies 
associated noise annoyance, anxiety disorders, and depression with the 
clinical manifestation of atrial fibrillation (Beutel et al., 2016; Hahad 
et al., 2018; Hahad et al., 2021), underlining the strong stress-dependent 
component in the adverse health effects of noise. Animal research 
should clearly define the applied noise on a qualitative and quantitative 
basis, which includes besides the duration of exposure also mean sound 
pressure levels, frequencies, pattern (continuous versus interrupted) as 
we have reported previously that continuous white noise at similar 
exposure duration and mean sound pressure levels was not harmful in 
contrast to aircraft noise with irregular breaks (Munzel et al., 2017). 
Human studies should clearly state the mean sound pressure level (e.g. 
Leq or Lden) and at least try to report separate health effects by noise at 
day versus at night as nighttime noise is more detrimental for cardio-
vascular health and probably also other systems’ dysregulation (Munzel 
et al., 2020). Preferably, human studies should measure the real noise 
exposure in the sleeping room during night and not the mean sound 
pressure values at the address level as many factors may influence the 
indoor noise exposure such as the presence of sound insulation windows 
or sleeping with open windows. This research complications may also 
require to conduct more mechanistic field studies with clearly defined 
nocturnal noise exposures and assessment of an advanced set of func-
tional as well as biochemical parameters as done by us in the past 
(Schmidt et al., 2013; Herzog et al., 2019; Schmidt et al., 2021). Human 
studies should not only concentrate on noise exposure-clinical outcome 
associations (e.g. calculate the increased risk of ischemic heart disease, 
hypertension, or diabetes with increasing mean sound pressure levels) - 
whereas these association studies are highly important, e.g. for defining 
safe legal limits for noise exposure, mechanistic insights from large 
population studies with clearly defined sophisticated endpoints such as 
changes in epigenetic markers or arterial stiffness are also highly war-
ranted (Foraster et al., 2017; Eze et al., 2020). As we also know that 
environmental noise co-localizes with other environmental risk factors 
such as air pollution, light pollution or heat islands in highly urbanized 
areas, especially big cities (Munzel et al., 2021; Munzel et al., 2021), 
future human studies should carefully adjust for these other environ-
mental risk factors besides the common confounders such as sex, age, 
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social status, work strain, and others. Research gaps may comprise the 
knowledge on the reversibility of noise-induced damage as not much is 
known on the persistence of the adverse health effects of noise. Also, 
resilience should be addressed in more detail to understand why some 
individuals are more resistant to noise-mediated stress responses. This 
could also help to identify new targets for pharmacological or life style 
interventions against the adverse health effects of noise. 
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